Histidine catabolism (Homo sapiens)

From WikiPathways

Revision as of 16:29, 25 January 2021 by ReactomeTeam (Talk | contribs)
(diff) ←Older revision | Current revision (diff) | Newer revision→ (diff)
Jump to: navigation, search
13, 6, 135119825, 124, 7, 10cytosolL-GluPXLP-K305-HDC HALUCAADPAdoMetH2OPiH2OTHFCO2PXLP-K305-HDC dimerHistUROC1 UROC1:NAD+CARNMT1AdoHcyAnserineAMDHD1CARNS1CARNMeHistNH4+FTCD 4I-5PROAL-Hisb-AlaNAD+ NF-GluAdoMetFTCD octamerHNMTFITHFH+AdoHcyATP


Description

The major pathway of histidine catabolism, annotated here, proceeds in four steps to yield glutamate and, in the process, convert one molecule of tetrahydrofolate to 5-formiminotetrahydrofolate (Morris et al. 1972). Histidine can also be decarboxylated to form histamine. Histidine can also be used to form carnosine (beta-alanyl-L-histidine), an abundant dipeptide in skeletal muscle and brain of most vertebrates. View original pathway at Reactome.

Comments

Reactome-Converter 
Pathway is converted from Reactome ID: 70921
Reactome-version 
Reactome version: 75
Reactome Author 
Reactome Author: D'Eustachio, Peter

Try the New WikiPathways

View approved pathways at the new wikipathways.org.

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Morris ML, Lee SC, Harper AE.; ''Influence of differential induction of histidine catabolic enzymes on histidine degradation in vivo.''; PubMed Europe PMC Scholia
  2. Drozak J, Piecuch M, Poleszak O, Kozlowski P, Chrobok L, Baelde HJ, de Heer E.; ''UPF0586 Protein C9orf41 Homolog Is Anserine-producing Methyltransferase.''; PubMed Europe PMC Scholia
  3. Murley LL, Mejia NR, MacKenzie RE.; ''The nucleotide sequence of porcine formiminotransferase cyclodeaminase. Expression and purification from Escherichia coli.''; PubMed Europe PMC Scholia
  4. Yamauchi K, Sekizawa K, Suzuki H, Nakazawa H, Ohkawara Y, Katayose D, Ohtsu H, Tamura G, Shibahara S, Takemura M.; ''Structure and function of human histamine N-methyltransferase: critical enzyme in histamine metabolism in airway.''; PubMed Europe PMC Scholia
  5. Yamada S, Ohira M, Horie H, Ando K, Takayasu H, Suzuki Y, Sugano S, Hirata T, Goto T, Matsunaga T, Hiyama E, Hayashi Y, Ando H, Suita S, Kaneko M, Sasaki F, Hashizume K, Ohnuma N, Nakagawara A.; ''Expression profiling and differential screening between hepatoblastomas and the corresponding normal livers: identification of high expression of the PLK1 oncogene as a poor-prognostic indicator of hepatoblastomas.''; PubMed Europe PMC Scholia
  6. Hilton JF, Christensen KE, Watkins D, Raby BA, Renaud Y, de la Luna S, Estivill X, MacKenzie RE, Hudson TJ, Rosenblatt DS.; ''The molecular basis of glutamate formiminotransferase deficiency.''; PubMed Europe PMC Scholia
  7. Horton JR, Sawada K, Nishibori M, Zhang X, Cheng X.; ''Two polymorphic forms of human histamine methyltransferase: structural, thermal, and kinetic comparisons.''; PubMed Europe PMC Scholia
  8. Drozak J, Veiga-da-Cunha M, Vertommen D, Stroobant V, Van Schaftingen E.; ''Molecular identification of carnosine synthase as ATP-grasp domain-containing protein 1 (ATPGD1).''; PubMed Europe PMC Scholia
  9. Mamune-Sato R, Yamauchi K, Tanno Y, Ohkawara Y, Ohtsu H, Katayose D, Maeyama K, Watanabe T, Shibahara S, Takishima T.; ''Functional analysis of alternatively spliced transcripts of the human histidine decarboxylase gene and its expression in human tissues and basophilic leukemia cells.''; PubMed Europe PMC Scholia
  10. Rutherford K, Parson WW, Daggett V.; ''The histamine N-methyltransferase T105I polymorphism affects active site structure and dynamics.''; PubMed Europe PMC Scholia
  11. Kawai Y, Moriyama A, Asai K, Coleman-Campbell CM, Sumi S, Morishita H, Suchi M.; ''Molecular characterization of histidinemia: identification of four missense mutations in the histidase gene.''; PubMed Europe PMC Scholia
  12. Espinós C, Pineda M, Martínez-Rubio D, Lupo V, Ormazabal A, Vilaseca MA, Spaapen LJ, Palau F, Artuch R.; ''Mutations in the urocanase gene UROC1 are associated with urocanic aciduria.''; PubMed Europe PMC Scholia
  13. Solans A, Estivill X, de la Luna S.; ''Cloning and characterization of human FTCD on 21q22.3, a candidate gene for glutamate formiminotransferase deficiency.''; PubMed Europe PMC Scholia

History

CompareRevisionActionTimeUserComment
114802view16:29, 25 January 2021ReactomeTeamReactome version 75
113246view11:31, 2 November 2020ReactomeTeamReactome version 74
112804view18:11, 9 October 2020DeSlOntology Term : 'histidine degradation pathway' added !
112754view16:15, 9 October 2020ReactomeTeamNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
4I-5PROAMetaboliteCHEBI:27384 (ChEBI)
ADPMetaboliteCHEBI:456216 (ChEBI)
AMDHD1ProteinQ96NU7 (Uniprot-TrEMBL)
ATPMetaboliteCHEBI:30616 (ChEBI)
AdoHcyMetaboliteCHEBI:16680 (ChEBI)
AdoMetMetaboliteCHEBI:15414 (ChEBI)
AnserineMetaboliteCHEBI:18323 (ChEBI)
CARNMetaboliteCHEBI:15727 (ChEBI)
CARNMT1ProteinQ8N4J0 (Uniprot-TrEMBL)
CARNS1ProteinA5YM72 (Uniprot-TrEMBL)
CO2MetaboliteCHEBI:16526 (ChEBI)
FITHFMetaboliteCHEBI:15639 (ChEBI)
FTCD ProteinO95954 (Uniprot-TrEMBL)
FTCD octamerComplexR-HSA-70908 (Reactome)
H+MetaboliteCHEBI:15378 (ChEBI)
H2OMetaboliteCHEBI:15377 (ChEBI)
HALProteinP42357 (Uniprot-TrEMBL)
HNMTProteinP50135 (Uniprot-TrEMBL)
HistMetaboliteCHEBI:18295 (ChEBI)
L-GluMetaboliteCHEBI:29985 (ChEBI)
L-HisMetaboliteCHEBI:32513 (ChEBI)
MeHistMetaboliteCHEBI:29009 (ChEBI)
NAD+ MetaboliteCHEBI:57540 (ChEBI)
NF-GluMetaboliteCHEBI:18327 (ChEBI)
NH4+MetaboliteCHEBI:28938 (ChEBI)
PXLP-K305-HDC ProteinP19113 (Uniprot-TrEMBL)
PXLP-K305-HDC dimerComplexR-HSA-977300 (Reactome)
PiMetaboliteCHEBI:43474 (ChEBI)
THFMetaboliteCHEBI:15635 (ChEBI)
UCAMetaboliteCHEBI:30817 (ChEBI)
UROC1 ProteinQ96N76 (Uniprot-TrEMBL)
UROC1:NAD+ComplexR-HSA-70901 (Reactome)
b-AlaMetaboliteCHEBI:16958 (ChEBI)

Annotated Interactions

View all...
SourceTargetTypeDatabase referenceComment
4I-5PROAArrowR-HSA-70903 (Reactome)
4I-5PROAR-HSA-70906 (Reactome)
ADPArrowR-HSA-6786245 (Reactome)
AMDHD1mim-catalysisR-HSA-70906 (Reactome)
ATPR-HSA-6786245 (Reactome)
AdoHcyArrowR-HSA-175993 (Reactome)
AdoHcyArrowR-HSA-8876789 (Reactome)
AdoMetR-HSA-175993 (Reactome)
AdoMetR-HSA-8876789 (Reactome)
AnserineArrowR-HSA-8876789 (Reactome)
CARNArrowR-HSA-6786245 (Reactome)
CARNMT1mim-catalysisR-HSA-8876789 (Reactome)
CARNR-HSA-8876789 (Reactome)
CARNS1mim-catalysisR-HSA-6786245 (Reactome)
CO2ArrowR-HSA-977301 (Reactome)
FITHFArrowR-HSA-70920 (Reactome)
FTCD octamermim-catalysisR-HSA-70920 (Reactome)
H+ArrowR-HSA-70906 (Reactome)
H2OR-HSA-70903 (Reactome)
H2OR-HSA-70906 (Reactome)
HALmim-catalysisR-HSA-70899 (Reactome)
HNMTmim-catalysisR-HSA-175993 (Reactome)
HistArrowR-HSA-977301 (Reactome)
HistR-HSA-175993 (Reactome)
L-GluArrowR-HSA-70920 (Reactome)
L-HisR-HSA-6786245 (Reactome)
L-HisR-HSA-70899 (Reactome)
L-HisR-HSA-977301 (Reactome)
MeHistArrowR-HSA-175993 (Reactome)
NF-GluArrowR-HSA-70906 (Reactome)
NF-GluR-HSA-70920 (Reactome)
NH4+ArrowR-HSA-70899 (Reactome)
PXLP-K305-HDC dimermim-catalysisR-HSA-977301 (Reactome)
PiArrowR-HSA-6786245 (Reactome)
R-HSA-175993 (Reactome) Histamine (Hist) plays important biological roles in cell-to-cell communication via by binding to histamine receptors and its local action is terminated primarily by methylation. Histamine is inactivated principally by two enzymes: histamine N-methyltransferase (HNMT) and diamine oxidase. HNMT uses the methyl donor AdoMet, methylates Hist to form methylhistamine (MetHist) (Yamauchi et al. 1994). The common polymorphism T105I correlates with high (T) or low (I) activity phenotypes (Horton et al. 2001, Rutherford et al. 2008).
R-HSA-6786245 (Reactome) Carnosine (beta-alanyl-L-histidine) and homocarnosine (gamma-aminobutyryl-L-histidine) are abundant dipeptides in skeletal muscle and brain of most vertebrates. Carnosine synthase 1 (CARNS1) transforms ATP, L-histidine (L-His) and beta-alanine (b-Ala) to carnosine (CARN) with much greater efficiency than synthesis of homocarnosine (Drozak et al. 2010).
R-HSA-70899 (Reactome) Cytosolic histidine ammonia lyase (HAL) catalyzes the reaction of histidine to form urocanate and NH4+ (Kawai et al. 2005).
R-HSA-70903 (Reactome) Cytosolic urocanate hydratase (UROC1) catalyzes the hydrolysis of urocanate to form 4-imidazolone-5-propanoate. Human UROC1 was first identified in surveys of genes differentially expressed in hepatoblastoma (Yamamda et al. 2004). Recent biochemical and molecular studies of UROC1 protein and cDNA from a patient with urocanic aciduria has confirmed the function of UROC1 in vivo (Espinos et al. 2009).
R-HSA-70906 (Reactome) Cytosolic imidazolonepropionase catalyzes the hydrolysis of 4-imidazolone-5-propanoate to form N-Formimino-L-glutamate. While evidence from many experimental systems indicates that this reaction occurs, existence of the human enzyme is inferred only from high-throughput screening studies (e.g., Yamada et al. 2004).
R-HSA-70920 (Reactome) Cytosolic formimidoyltransferase-cyclodeaminase (FTCD) catalyzes the reaction of N-formiminoglutamate and tetrahydrofolate to form glutamate and 5-formiminotetrahydrofolate. The gene encoding the human enzyme has beeen cloned and its sequence can encode a protein homologous the the biochemically characterized porcine protein (Solans et al. 2000; Murley et al. 1993). The function of FTCD in vivo was established by identification of missense mutations that reduce enzyme activity in patients with glutamate formiminotransferase deficiency (Hilton et al. 2003). Human FTCD is inferred to be an octamer by homology to the porcine enzyme (Murley et al. 1993).
R-HSA-8876789 (Reactome) Anserine (Beta-alanyl-N(Pi)-methyl-L-histidine) is a methylated derivative of carnosine (Beta-alanyl-L-histidine) and an abundant constituent of vertebrate skeletal muscles (Boldyrev et al. 2013). It has been suggested to serve as a proton buffer and radical scavenger. The formation of anserine is catalyzed by carnosine N-methyltransferase (CARNMT1), which transfers a methyl group from S-adenosyl-L-methionine (SAM) onto the nitrogen atom (Pi) of L-histidine residue in carnosine (Drozak et al. 2015). While CARNMT1 produces anserine in mammals, a similar reaction is catalysed by a different enzyme (carnosine N-methyltransferase 2) in birds and reptiles (Drozak et al. 2013).
R-HSA-977301 (Reactome) Decarboxylation of L-Histidine happens analogously to other decarboxylations of amino acids. It uses the cofactor pyridoxal phosphate and is catalyzed by histidine decarboxylase (Mamune-Sato et al, 1992).
THFR-HSA-70920 (Reactome)
UCAArrowR-HSA-70899 (Reactome)
UCAR-HSA-70903 (Reactome)
UROC1:NAD+mim-catalysisR-HSA-70903 (Reactome)
b-AlaR-HSA-6786245 (Reactome)
Personal tools