Diet-dependent trimethylamine/trimethylamine N-oxide metabolism (Homo sapiens)
From WikiPathways
Description
The host-microbiome pathway trimethylamine/trimethylamine N-oxide (TMA/TMAO) pathway which exists along the gut-heart axis. The precursors choline, l-carnitine and betaine are first microbially transformed to TMA. This metabolite is subsequently converted to TMAO by the flavin-containing monooxygenase 3.
Quality Tags
Ontology Terms
Bibliography
View all... |
- Craciun S, Balskus EP; ''Microbial conversion of choline to trimethylamine requires a glycyl radical enzyme.''; Proc Natl Acad Sci U S A, 2012 PubMed Europe PMC Scholia
- Bodea S, Balskus EP; ''Purification and Characterization of the Choline Trimethylamine-Lyase (CutC)-Activating Protein CutD.''; Methods Enzymol, 2018 PubMed Europe PMC Scholia
- Zhao G, He F, Wu C, Li P, Li N, Deng J, Zhu G, Ren W, Peng Y; ''Betaine in Inflammation: Mechanistic Aspects and Applications.''; Front Immunol, 2018 PubMed Europe PMC Scholia
- Fennema D, Phillips IR, Shephard EA; ''Trimethylamine and Trimethylamine N-Oxide, a Flavin-Containing Monooxygenase 3 (FMO3)-Mediated Host-Microbiome Metabolic Axis Implicated in Health and Disease.''; Drug Metab Dispos, 2016 PubMed Europe PMC Scholia
- Gadda G; ''Choline oxidases.''; Enzymes, 2020 PubMed Europe PMC Scholia
- Buffa JA, Romano KA, Copeland MF, Cody DB, Zhu W, Galvez R, Fu X, Ward K, Ferrell M, Dai HJ, Skye S, Hu P, Li L, Parlov M, McMillan A, Wei X, Nemet I, Koeth RA, Li XS, Wang Z, Sangwan N, Hajjar AM, Dwidar M, Weeks TL, Bergeron N, Krauss RM, Tang WHW, Rey FE, DiDonato JA, Gogonea V, Gerberick GF, Garcia-Garcia JC, Hazen SL; ''The microbial gbu gene cluster links cardiovascular disease risk associated with red meat consumption to microbiota L-carnitine catabolism.''; Nat Microbiol, 2022 PubMed Europe PMC Scholia
- Wood AP, Warren FJ, Kelly DP; ''Methylotrophic Bacteria in Trimethylaminuria and Bacterial Vaginosis''; Springer Berlin Heidelberg, 2010 DOI Scholia
- Rajakovich LJ, Fu B, Bollenbach M, Balskus EP; ''Elucidation of an anaerobic pathway for metabolism of l-carnitine-derived γ-butyrobetaine to trimethylamine in human gut bacteria.''; Proc Natl Acad Sci U S A, 2021 PubMed Europe PMC Scholia
- Naumann E, Hippe H, Gottschalk G; ''Betaine: New Oxidant in the Stickland Reaction and Methanogenesis from Betaine and l-Alanine by a Clostridium sporogenes-Methanosarcina barkeri Coculture.''; Appl Environ Microbiol, 1983 PubMed Europe PMC Scholia
- Quareshy M, Shanmugam M, Townsend E, Jameson E, Bugg TDH, Cameron AD, Chen Y; ''Structural basis of carnitine monooxygenase CntA substrate specificity, inhibition, and intersubunit electron transfer.''; J Biol Chem, 2021 PubMed Europe PMC Scholia
History
View all... |
External references
DataNodes
View all... |
Name | Type | Database reference | Comment |
---|---|---|---|
2.1.1.157 (transmethylase) | GeneProduct | ||
ALDH7A1 | GeneProduct | ||
Acetate | Metabolite | C00033 (KEGG Compound) | |
BBU | GeneProduct | ||
BET | Metabolite | ||
BETALD | Metabolite | ||
Betaine exporter | |||
CHDH | Protein | ||
CaIT | GeneProduct | ||
Carnitine | Metabolite | ||
Choline | Metabolite | ||
CntA/B | GeneProduct | ||
CutC (and CutD) | GeneProduct | ||
Decarboxylation | |||
Dimethylglycine | Metabolite | C01026 (KEGG Compound) | |
FAD | Metabolite | ||
FADH2 | Metabolite | ||
FMO3 | GeneProduct | ||
H20 | Metabolite | ||
Malic Semialdehyde | Pathway | ||
NADH | Metabolite | ||
R07228 | Pathway | ||
SLC44A1 | GeneProduct | ||
TMA | Metabolite | ||
TMAO | Metabolite | ||
TMAO aldolase | Protein | 4.1.2.32 (KEGG Genes) | |
Tmm | Protein | 1.14.13.148 (KEGG Genes) | |
γBB | Metabolite | CHEMBL2074645 (ChEMBL compound) |
Annotated Interactions
No annotated interactions