Omega-6-fatty acids in senescence (Homo sapiens)

From WikiPathways

Revision as of 13:38, 16 October 2023 by JuliaUM (Talk | contribs)
Jump to: navigation, search
30, 1198425, 74105575023, 2549, 69, 1255725, 10413, 15, 39, 42, 5158, 110848764, 95, 12351, 99, 11955, 65, 724605211957252157427, 1175, 6213310525, 848212753, 107746, 5988, 114368871001272, 25, 7787, 981275720, 25, 54, 57, 73...46, 55, 65, 89, 12370, 84, 9512716, 841051051275, 663, 9725, 7464, 95, 1235274, 88, 10910770, 9582127119105, 114626952, 116105412517, 10825, 74331613, 31, 55, 65558, 13, 24, 1036818, 55, 98527, 524, 3841, 9542, 47, 51, 996, 8284, 888754169865710540745264, 70, 9530, 11957925, 12327986572, 25, 7723, 28, 66, 69, 76...424, 84, 9511010554551055754685578131188430879, 23, 61, 93, 11424, 4611, 20, 5410525, 12323, 2541105117, 12710521529518, 10452574130, 11952, 11610584, 97, 10030110335242, 44, 51, 9916, 89, 12321239074PDietary Lipids9α, 11β-dihydroxy-15-oxo-2,3,18,19-tetranorprost-5-ene-1,20-dioic acid*p53Beta-oxidation15-ketoprostaglandin reductaseNon-enzymaticPGI1*L-PGDSAdrenic acid (22:4,w6)DH-TxA2*PGEM (11a-hydroxy-9,15-dioxo-2,3,4,5,20-pentanor-19-carboxyprostanoic acid)Δ12-PGD29alpha,11alpha-PGF2aPGA2Isoprostanes9,15-dideoxy-Δ9,12,14-PGD2*15-keto-PGE16-keto-PGF1aPGD1PGC Isomeraseβ and ω oxidation*9-hydroxyprostaglandin dehydrogenaseProstaglandin [e]Excretion via urineE series resolvinsEnzymatic β and w oxidation*mPGES-113,14-dihydro-15-keto-PGD2 2,3 dinor-6-keto-PGF1a*DH-PGD2*DH-TxB*TxA6-keto-PGE1EP1Non-enzymatic dehydrationPGG2Dehydration9a, 11a-dihydroxy-11-keto-2,3,4,5-tetranorprostane-1,16-dioic acid*15-keto-13,14-dihydro-PGE1PGI213,14-dihydro-15-keto-PGA215-keto-8-iso-PGF2aPGG1PGE2DehydraseSenescence phenotype11-deoxy-13,14-dihydro-15-keto-11,16-cyclo-PGE2*TBXAS1Gq15-keto-PGI2DH-PGF2a6-trans-LTB4Docosahexaenoic acid (DHA) (22:6,w3)Unknown9alpha,11beta-PGF2Albumin-mediated degradationNon-enzymatic,albumin-mediated degradationH-PGDSRASDP115-hydroxy PG dehydrogenase*prostaglandin Δreductase*β-oxidase*RASSLCO2A1PPARγGqNon-enzymatic dehydrationcAMP11,15-dioxo-9α-hydroxy-, 2,3,4,5-tetranorprostan-1,20-dioic acid*Carbonyl reductase*HETEsExcretion via urine15-keto-PGD2w-hydroxylase*Eicosadienoic acid (20:2,w6)Dinor-4-keto-7,9,13-trihydroxy-prosta-11,12-enoic acid*13,14-dihydro-PGF2aExcretionEETsDH-PGE2DH-PGF1a*p53S3715-keto-PGF2aArachidonic Acid (20:4,w6)Dihomo-15d-PGJ25α,7α-dihydroxy-11-keto tetranor-prostane-1,16-dioic acid*Unknown8-iso-PGF2aTxA1*15-deoxy-Δ12,14-PGJ2IP3AKR1C3Spontaneous hydrolysisLGE2PGH2y-linolenic acid (GLA) (18:3,w6)Free radical-catalyzed peroxidationPGA Isomerase13,14-dihydro-PGE2*15-keto-13,14-dihydro-PGE1PGH1PGJ2Unknown9-deoxy-Δ12-PGD2*15-keto-13,14-dihydro-PGF2aD-series resolvinsABCC4PGA1UnknownE2-IsoKΔ13-reductaseElongaseDH-PGJ2PGDSIsoprostanesΔ12-PGJ213,14-dihydro-15-keto-PGE2Dihomo-y-linolenic acid (DGLA) (20:3,w6)UnknownΔ6-trans-12-epi-leukotriene B4PGF1aProtectinsDH-PGH2*AKR1B1CYP4F8Ca2+Cell Cycle ArrestSenescence19-OH-PGE1G2-IsoPPGE 19-hydroxylaseTXASDH-15d-Δ12,14-PGD22,3-dinor-8-IsoPGF2a5-series leukotrienesLinoleic acid (LA) (18:2,w6)PGC1AKR1C3TxB1β-oxidation*PGB1Δ9-Elongase*PGE1MAPK cascadeUnknownPGE 19-hydroxylase2,3-dinor-5,6-dihydro-8-IsoPGF2aGi4,13-diketo-7,9-dihydroxy-2,3-dinor prostanoic acid*elongationdelta6 desaturationbeta-oxidationHPGD Non-enzymatic degradationIP3PGD25-HETE8-iso-13,14-dihydro-15-keto-PGE2*CYP8A119-OH-PGH2*PGFSH2-IsoPPGESPG-9KRCa2+MaresinsOsbond acid (22:5,w6)PRAK/MAPKAPK5LGD2Docosapentaenoic acid (DPA) (22:5,w3)Gs11-Deyhdro-Thromboxane B2PGDSβ-oxidationPGES126542545, 791264558, 110113216519, 26, 74, 91, 104252525, 9818, 25, 55, 98, 122...18, 25, 40, 55, 98...18, 55, 104, 12443, 6514, 27, 31, 55, 65...23, 37, 72, 9116, 19, 22, 29, 37...mPGES-2cPGESAKR1B112, 16, 23, 4816, 23, 4811, 20, 54DP24519-OH-PGE215-keto-PGE2EP2EP358, 11058, 110EP458, 110PGC2PGB2FPTxBTPGsIPcAMPMembrane phospholipids36121Cytosolic phospholipase A2Cytosolic phospholipase A2p38 MAPKNon-enzymatic dehydration11-hydroxy-9,15-dioxo-prost-5-en-1,20-dioic acid*257α-hydroxy-5,11-diketo-tetranorprosta-1,16-dioc acid*67β-oxidase*54Dinor-4,13-diketo-7,9-dihydroxy-prostanoic acid*Dinor-4,13-diketo-7,9-dihydroxy-prostan-1,18-dioic acid*Unknown2,3-dinor 6-keto pentanor*19-OH-6-keto-PGF1aβ-oxidation*6,15-Diketo-13,14-dihydro-PGF1a*6,15-Diketo-13,14-dihydro-2,3-dinor PGF1a*β-oxidation*Unknown2,3-dinor-11β-PGF2*Unknown45Unknown8, 24, 10324, 4624248, 24, 462415, 24, 4215, 24, 35, 42, 511, 24, 39, 942,3-Dinor-Thromboxane B211-OH-dehydrogenaseUnknownUnknownUnknownUnknownPPTGS1PTGS251, 9917, 81, 10647, 51, 9915, 56PGH3ELOVL5TXASPGDSPGI3Eicosatetraenoic acid (ETA) (20:4,w3)PGE3PGF3aPGD3PGESProstaglandin F synthaseStearidonic acid (SDA) (18:4,w3)Phospholipase (cPLA2α)PGISTxA3a-Linolenic acid (ALA) (18:3,w3)Eicosapentaenoic acid (EPA) (20:5,w3)PGG3Eicosatrienoic acid (20:3,w3)FADS2FADS1Dietary Lipids17, 81, 10646, 81, 10646, 81, 10646, 81, 10681, 10646, 81, 10615, 51, 56, 9915, 51, 56, 9915, 51, 56, 9915-deoxy-Δ12,14-PGD2PTGS1PTGS2FADS2Δ9-Elongase*ELOVL217, 10817, 10817, 10810810810874, 10810810810810817, 108108108FADS2108ELOVL5FADS2FADS1ELOVL515-keto-13,14-dihydro-8-iso-PGF2aalpha-tetranor-15-keto-13,14-dihydro-8-iso-PGF2a*β-oxidationExcretion via urineExcretionExcretion via urineExcretion via urineΔ13-reductaseUnknownΔ13-reductaseΔ13-reductase15-PGDHExcretion via urine6,15-diketo PGF1a54UnknownD2-IsoPJ2-IsoPE2-IsoPA2-IsoPD2-IsoK68, 80, 9680, 85121, 127121, 127121DPEP1GGT1DPEP2LTC4SGGT5LTA4H34, 71, 80, 8580, 85, 968380, 85, 966880, 85, 96, 12783838383ALOX5LTB45-HPETELTD4LTA4LTE4LTC4SASPFLAPHPGD HPGD HPGD Prostaglandin [c]Prostaglandin [e]Prostaglandin [c]Prostaglandin [e]Prostaglandin [c]DH-PGI2Non-enzymatic6868, 7510, 68, 7568, 75107568Oncogene-induced senescenceRAS32CysLT1RSIRT110p5310ROSp53Pp21RbRbP68, 75121, 127LipoxinsEoxinsALOX12ALOX15Oncogene-induced senescenceDNA damage-induced senescencePAI-110, 11110, 111SenescenceParacrine senescence32p53Ac7520-OH-LTB4Oncogene-induced senescenceDNA damage-induced senescenceOxidative stress-induced senescenceReplicative senescenceIrradiation-induced senescenceReplicative senescenceRadiation-induced senescenceSASPIsofuranesIrradiation-induced senescence32DH-PGG2*elongationdelta6 desaturationbeta-oxidationIrradiation-induced SenescenceIrradiation-induced SenescenceIrradiation-induced SenescenceOncogene-induced senescence (RAS)127127Irradiation-induced SenescenceOncogene-induced senescence (RAS)127127127127127127Radiation-induced senescence


Description

Oxylipins, notably prostaglandins, are synthetized by senescent cells and then accumulate, promoting the senescent-associated secretory phenotype (Wiley et al., 2021). The prostaglandins are classified into three main groups, depending on the starting point of their biosynthesis. The serie-1-prostaglandins are derived from its precursor dihomo-γ-linolenic acid (DGLA). The serie-2-prostaglandins and serie-3-prostaglandins are derived from arachidonic acid (AA) and eicosapentae-noic acid (EPA), respectively (Noverr et al., 2003)

Try the New WikiPathways

View approved pathways at the new wikipathways.org.

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. C P Quilley, J C McGiff, W H Lee, F F Sun, P Y Wong; ''6-Keto PGExi A Possible Metabolite of ProstacyclinHaving Platelet Antiaggregatory Effects''; , 1980 PubMed Europe PMC Scholia
  2. B. Rosenkranz, C. Fischer, K.E. Weimer, J.C. Frolich; ''Metabolism of prostacyclin and 6-keto-prostaglandin F1 alpha in man.''; Journal of Biological Chemistry, 1980
  3. Milne GL, Yin H, Hardy KD, Davies SS, Roberts LJ 2nd; ''Isoprostane generation and function.''; Chem Rev, 2011 PubMed Europe PMC Scholia
  4. Chi J, Cheng J, Wang S, Li C, Chen M; ''Promising Anti-Inflammatory Tools: Biomedical Efficacy of Lipoxins and Their Synthetic Pathways.''; Int J Mol Sci, 2023 PubMed Europe PMC Scholia
  5. ''Protectins, Resolvins and Maresins - Specialized Pro-Resolving Mediators''; ,
  6. Biringer RG; ''The enzymology of human eicosanoid pathways: the lipoxygenase branches.''; Mol Biol Rep, 2020 PubMed Europe PMC Scholia
  7. Wiley CD, Brumwell AN, Davis SS, Jackson JR, Valdovinos A, Calhoun C, Alimirah F, Castellanos CA, Ruan R, Wei Y, Chapman HA, Ramanathan A, Campisi J, Jourdan Le Saux C; ''Secretion of leukotrienes by senescent lung fibroblasts promotes pulmonary fibrosis.''; JCI Insight, 2019 PubMed Europe PMC Scholia
  8. Green AR, Freedman C, Tena J, Tourdot BE, Liu B, Holinstat M, Holman TR; ''5 S,15 S-Dihydroperoxyeicosatetraenoic Acid (5,15-diHpETE) as a Lipoxin Intermediate: Reactivity and Kinetics with Human Leukocyte 5-Lipoxygenase, Platelet 12-Lipoxygenase, and Reticulocyte 15-Lipoxygenase-1.''; Biochemistry, 2018 PubMed Europe PMC Scholia
  9. Annaleise V Sampey, Seetha Monrad, Leslie J Crofford; ''Microsomal prostaglandin E synthase-1: the inducible synthase for prostaglandin E2''; Arthritis Research & Therapy, 2005 PubMed Europe PMC Scholia
  10. Orhan Lepara, Asija Zaciragic, Almir Fajkic, Alma Dzubur Kulenovic, Amela Dervisevic, Amina Valjevac, Emina Kiseljakovic, Saida Ibragic; ''Peripheral 8-iso-PGF2a as a Biomarker in Bosnian Patients with Alzheimer's Disease and Vascular Dementia.''; National Library of Medicine, 2020 PubMed Europe PMC Scholia
  11. Polet H, Levine L; ''Metabolism of prostaglandins E, A, and C in serum.''; J Biol Chem, 1975 PubMed Europe PMC Scholia
  12. Park JY, Pillinger MH, Abramson SB; ''Prostaglandin E2 synthesis and secretion: the role of PGE2 synthases.''; Clin Immunol, 2006 PubMed Europe PMC Scholia
  13. Lin Y, Xu Z; ''Fibroblast Senescence in Idiopathic Pulmonary Fibrosis.''; Front Cell Dev Biol, 2020 PubMed Europe PMC Scholia
  14. Bylund J, Hidestrand M, Ingelman-Sundberg M, Oliw EH; ''Identification of CYP4F8 in human seminal vesicles as a prominent 19-hydroxylase of prostaglandin endoperoxides.''; J Biol Chem, 2000 PubMed Europe PMC Scholia
  15. Zhang M, Li W, Li T; ''Generation and detection of levuglandins and isolevuglandins in vitro and in vivo.''; Molecules, 2011 PubMed Europe PMC Scholia
  16. Yin H, Musiek ES, Gao L, Porter NA, Morrow JD; ''Regiochemistry of neuroprostanes generated from the peroxidation of docosahexaenoic acid in vitro and in vivo.''; J Biol Chem, 2005 PubMed Europe PMC Scholia
  17. Farker K, Schweer H, Vollandt R, Nassr N, Nagel U, Seyberth HW, Hoffmann A, Oettel M; ''Measurements of urinary prostaglandins in young ovulatory women during the menstrual cycle and in postmenopausal women.''; Prostaglandins, 1997 PubMed Europe PMC Scholia
  18. Oh SF, Pillai PS, Recchiuti A, Yang R, Serhan CN; ''Pro-resolving actions and stereoselective biosynthesis of 18S E-series resolvins in human leukocytes and murine inflammation.''; J Clin Invest, 2011 PubMed Europe PMC Scholia
  19. Smith W; ''Eicosanoid nomenclature.''; Prostaglandins, 1989 PubMed Europe PMC Scholia
  20. Sinzinger H, Neumann I, O'Grady J, Rogatti W, Peskar BA; ''Effects of prostaglandin E1 metabolites on the induction of arterial thromboresistance.''; Prostaglandins Other Lipid Mediat, 1998 PubMed Europe PMC Scholia
  21. Ferreira I, Falcato F, Bandarra N, Rauter AP; ''Resolvins, Protectins, and Maresins: DHA-Derived Specialized Pro-Resolving Mediators, Biosynthetic Pathways, Synthetic Approaches, and Their Role in Inflammation.''; Molecules, 2022 PubMed Europe PMC Scholia
  22. E L Hahn, R L Gamelli; ''Prostaglandin E2 Synthesis and Metabolism in Burn Injury and Trauma''; , 2000 PubMed Europe PMC Scholia
  23. Anne-Mari Mustonen, Petteri Nieminen; ''Dihomo-γ-Linolenic Acid (20:3n-6)—Metabolism, Derivatives, and Potential Significance in Chronic Inflammation''; Pubmed, 2023 PubMed Europe PMC Scholia
  24. Straus DS, Glass CK; ''Cyclopentenone prostaglandins: new insights on biological activities and cellular targets.''; Med Res Rev, 2001 PubMed Europe PMC Scholia
  25. Milne GL, Yin H, Morrow JD; ''Human biochemistry of the isoprostane pathway.''; J Biol Chem, 2008 PubMed Europe PMC Scholia
  26. Serhan CN, Petasis NA; ''Resolvins and protectins in inflammation resolution.''; Chem Rev, 2011 PubMed Europe PMC Scholia
  27. P K Moore, R J Griffiths; ''Review: 6 keto-prostaglandin-E1''; National Library of Medicine, 1983 PubMed Europe PMC Scholia
  28. Suryadevara V, Ramchandran R, Kamp DW, Natarajan V; ''Lipid Mediators Regulate Pulmonary Fibrosis: Potential Mechanisms and Signaling Pathways.''; Int J Mol Sci, 2020 PubMed Europe PMC Scholia
  29. A Leonhardt, M Krauss, U Gieler, H Schweer, R Happle, H W Seyberth; ''In vivo formation of prostaglandin E1 and prostaglandin E2 in atopic dermatitis.''; British Journal of Dermatology, 1997 PubMed Europe PMC Scholia
  30. Hammarström S, Orning L, Bernström K; ''Metabolism of leukotrienes.''; Mol Cell Biochem, 1985 PubMed Europe PMC Scholia
  31. Rodriguez AR, Spur BW; ''First total syntheses of the pro-resolving lipid mediators 7(S),13(R),20(S)-Resolvin T1 and 7(S),13(R)-Resolvin T4.''; Tetrahedron Lett, 2020 PubMed Europe PMC Scholia
  32. Saini RK, Keum YS; ''Omega-3 and omega-6 polyunsaturated fatty acids: Dietary sources, metabolism, and significance - A review.''; Life Sci, 2018 PubMed Europe PMC Scholia
  33. Kohli P, Levy BD; ''Resolvins and protectins: mediating solutions to inflammation.''; Br J Pharmacol, 2009 PubMed Europe PMC Scholia
  34. Hansen TV, Dalli J, Serhan CN; ''The novel lipid mediator PD1(n-3 DPA): An overview of the structural elucidation, synthesis, biosynthesis and bioactions.''; Prostaglandins Other Lipid Mediat, 2017 PubMed Europe PMC Scholia
  35. Yi XY, Gauthier KM, Cui L, Nithipatikom K, Falck JR, Campbell WB; ''Metabolism of adrenic acid to vasodilatory 1alpha,1beta-dihomo-epoxyeicosatrienoic acids by bovine coronary arteries.''; Am J Physiol Heart Circ Physiol, 2007 PubMed Europe PMC Scholia
  36. Watanabe K; ''Prostaglandin F synthase.''; Prostaglandins Other Lipid Mediat, 2002 PubMed Europe PMC Scholia
  37. Wong PY, Lee WH, Chao PH, Reiss RF, McGiff JC; ''Metabolism of prostacyclin by 9-hydroxyprostaglandin dehydrogenase in human platelets. Formation of a potent inhibitor of platelet aggregation and enzyme purification.''; J Biol Chem, 1980 PubMed Europe PMC Scholia
  38. Anthony W. Norman, Helen L. Henry; ''Chapter 8 - Eicosanoids''; Hormones (Third Edition), 2015
  39. Catalano A, Rodilossi S, Caprari P, Coppola V, Procopio A; ''5-Lipoxygenase regulates senescence-like growth arrest by promoting ROS-dependent p53 activation.''; EMBO J, 2005 PubMed Europe PMC Scholia
  40. A NORMAN; ''Eicosanoids''; Hormones:171-188, 2015
  41. Helliwell RJ, Adams LF, Mitchell MD; ''Prostaglandin synthases: recent developments and a novel hypothesis.''; Prostaglandins Leukot Essent Fatty Acids, 2004 PubMed Europe PMC Scholia
  42. F Liu, J A Orr, J Y Wu; ''''; , PubMed Europe PMC Scholia
  43. Ramesh Kumar Saini, Young-Soo Keum; ''Omega-3 and omega-6 polyunsaturated fatty acids: Dietary sources, metabolism, and significance - A review''; Life Sciences, 2018
  44. Wang W, Ballatori N; ''Endogenous glutathione conjugates: occurrence and biological functions.''; Pharmacol Rev, 1998 PubMed Europe PMC Scholia
  45. Peskar BA, Cawello W, Rogatti W, Rudofsky G; ''On the metabolism of prostaglandin E1 administered intravenously to human volunteers.''; J Physiol Pharmacol, 1991 PubMed Europe PMC Scholia
  46. P. J. Piper; ''''; , PubMed Europe PMC Scholia
  47. Dalli J, Colas RA, Serhan CN; ''Novel n-3 immunoresolvents: structures and actions.''; Sci Rep, 2013 PubMed Europe PMC Scholia
  48. Carstensen S, Gress C, Erpenbeck VJ, Kazani SD, Hohlfeld JM, Sandham DA, Müller M; ''Prostaglandin D(2) metabolites activate asthmatic patient-derived type 2 innate lymphoid cells and eosinophils via theDP(2) receptor.''; Respir Res, 2021 PubMed Europe PMC Scholia
  49. Chiang N, Serhan CN; ''Specialized pro-resolving mediator network: an update on production and actions.''; Essays Biochem, 2020 PubMed Europe PMC Scholia
  50. M Negishi, T Koizumi, A Ichikawa; ''Biological actions of delta 12-prostaglandin J2''; National Library of Medicine, 1995 PubMed Europe PMC Scholia
  51. Li J, Guo C, Wu J; ''15-Deoxy-delta-12,14-Prostaglandin J2 (15d-PGJ2), an Endogenous Ligand of PPAR-y: Function and Mechanism''; National Library of Medicine, 2019 PubMed Europe PMC Scholia
  52. Basu S; ''Metabolism of 8-iso-prostaglandin F2alpha.''; FEBS Lett, 1998 PubMed Europe PMC Scholia
  53. Galano JM, Lee YY, Oger C, Vigor C, Vercauteren J, Durand T, Giera M, Lee JC; ''Isoprostanes, neuroprostanes and phytoprostanes: An overview of 25years of researchin chemistry and biology.''; Prog Lipid Res, 2017 PubMed Europe PMC Scholia
  54. Galano JM, Lee YY, Oger C, Vigor C, Vercauteren J, Durand T, Giera M, Lee JC; ''Isoprostanes, neuroprostanes and phytoprostanes: An overview of 25years of research in chemistry and biology.''; Prog Lipid Res, 2017 PubMed Europe PMC Scholia
  55. S Basu; ''''; , PubMed Europe PMC Scholia
  56. Ohki S, Ogino N, Yamamoto S, Hayaishi O; ''Prostaglandin hydroperoxidase, an integral part of prostaglandin endoperoxide synthetase from bovine vesicular gland microsomes.''; J Biol Chem, 1979 PubMed Europe PMC Scholia
  57. Steffen Braune, Jan-Heiner Küpper, Friedrich Jung; ''Effect of Prostanoids on Human Platelet Function: An Overview''; , 2020 PubMed Europe PMC Scholia
  58. Erik Anggard, Ernst Oliw; ''Formation and metabolism of prostaglandins in the kidney.''; Kidney International, 1981
  59. ''PLA2G4A''; Wikipedia,
  60. Chiang N, Serhan CN; ''Specialized pro-resolving mediator network: an update on production and actions.''; Essays Biochem, 2020 PubMed Europe PMC Scholia
  61. Nourooz-Zadeh J, Halliwell B, Anggård EE; ''Evidence for the formation of F3-isoprostanes during peroxidation of eicosapentaenoic acid.''; Biochem Biophys Res Commun, 1997 PubMed Europe PMC Scholia
  62. Wiley CD, Sharma R, Davis SS, Lopez-Dominguez JA, Mitchell KP, Wiley S, Alimirah F, Kim DE, Payne T, Rosko A, Aimontche E, Deshpande SM, Neri F, Kuehnemann C, Demaria M, Ramanathan A, Campisi J; ''Oxylipin biosynthesis reinforces cellular senescence and allows detection of senolysis.''; Cell Metab, 2021 PubMed Europe PMC Scholia
  63. Primdahl KG, Aursnes M, Walker ME, Colas RA, Serhan CN, Dalli J, Hansen TV, Vik A; ''Synthesis of 13(R)-Hydroxy-7Z,10Z,13R,14E,16Z,19Z Docosapentaenoic Acid (13R-HDPA) and Its Biosynthetic Conversion to the 13-Series Resolvins.''; J Nat Prod, 2016 PubMed Europe PMC Scholia
  64. Jocelyn Reader, Dawn Holt, Amy Fulton; ''Prostaglandin E2 EP Receptors as Therapeutic Targets in Breast Cancer''; , 2011 PubMed Europe PMC Scholia
  65. Marhuenda J, Medina S, Martínez-Hernández P, Arina S, Zafrilla P, Mulero J, Oger C, Galano JM, Durand T, Solana A, Ferreres F, López-García JJ, Gil-Izquierdo A; ''Effect of the dietary intake of melatonin- and hydroxytyrosol-rich wines by healthy female volunteers on the systemic lipidomic-related oxylipins.''; Food Funct, 2017 PubMed Europe PMC Scholia
  66. Engeland K; ''Cell cycle regulation: p53-p21-RB signaling.''; Cell Death Differ, 2022 PubMed Europe PMC Scholia
  67. Sheng-Chung Lee, Lawrence Levine; ''Prostaglandin Metabolism: Cytoplasmic reduced nicotinamide adenine dinucleotide phosphate-dependent and microsomal reduced nicotinamide adenine dinucleotide-dependent prostaglandin E 9-ketoreductase activities in monkey and pigeon tissues.''; The Journal of Biological Chemistry, 1974
  68. Yang M, Song XQ, Han M, Liu H; ''The role of Resolvin D1 in liver diseases.''; Prostaglandins Other Lipid Mediat, 2022 PubMed Europe PMC Scholia
  69. Nishizawa M, Nakajima T, Yasuda K, Kanzaki H, Sasaguri Y, Watanabe K, Ito S; ''Close kinship of human 20alpha-hydroxysteroid dehydrogenase gene with three aldo-keto reductase genes.''; Genes Cells, 2000 PubMed Europe PMC Scholia
  70. M Negishi, T Koizumi, A Ichikawa; ''Biological actions of delta 12-prostaglandin J2''; Journal of Lipid Mediators and Cell Signalling, 1995 PubMed Europe PMC Scholia
  71. Mucha, Riutta A; ''Determination of 9alpha, 11beta prostaglandin F2 in human urine. combination of solid-phase extraction and radioimmunoassay.''; Prostaglandins Leukot Essent Fatty Acids, 2001 PubMed Europe PMC Scholia
  72. Brenna JT, Kothapalli KSD; ''New understandings of the pathway of long-chain polyunsaturated fatty acid biosynthesis.''; Curr Opin Clin Nutr Metab Care, 2022 PubMed Europe PMC Scholia
  73. Ni KD, Liu JY; ''The Functions of Cytochrome P450 ω-hydroxylases and the Associated Eicosanoids in Inflammation-Related Diseases.''; Front Pharmacol, 2021 PubMed Europe PMC Scholia
  74. Wallis JG, Watts JL, Browse J; ''Polyunsaturated fatty acid synthesis: what will they think of next?''; Trends Biochem Sci, 2002 PubMed Europe PMC Scholia
  75. G J Dusting, S Moncada, J R Vane; ''Recirculation of prostacyclin (PGI2) in the dog.''; British Journal of Pharmacology, 1978 PubMed Europe PMC Scholia
  76. Elisabeth L. Hahn, Li-Ke He, Richard L. Gamelli; ''Prostaglandin E2 Synthesis and Metabolism in Burn Injury and Trauma.''; The Journal of Trauma and Acute Care Surgery, 2000
  77. Habib GM, Shi ZZ, Cuevas AA, Lieberman MW; ''Identification of two additional members of the membrane-bound dipeptidase family.''; FASEB J, 2003 PubMed Europe PMC Scholia
  78. Luo Y, Jin M, Lou L, Yang S, Li C, Li X, Zhou M, Cai C; ''Role of arachidonic acid lipoxygenase pathway in Asthma.''; Prostaglandins Other Lipid Mediat, 2022 PubMed Europe PMC Scholia
  79. Ahmed OS, Galano JM, Pavlickova T, Revol-Cavalier J, Vigor C, Lee JC, Oger C, Durand T; ''Moving forward with isoprostanes, neuroprostanes and phytoprostanes: where are we now?''; Essays Biochem, 2020 PubMed Europe PMC Scholia
  80. Milne GL, Yin H, Hardy KD, Davies SS, Roberts LJ 2nd; ''Isoprostane generation and function.''; Chem Rev, 2011 PubMed Europe PMC Scholia
  81. Melo CFOR, Bachur LF, Delafiori J, Dabaja MZ, de Oliveira DN, Guerreiro TM, Tararam CA, Busso-Lopes AF, Moretti ML, Catharino RR; ''Does leukotriene F4 play a major role in the infection mechanism of Candida sp.?''; Microb Pathog, 2020 PubMed Europe PMC Scholia
  82. Hatem Tallima, Rashika El Ridi; ''''; , PubMed Europe PMC Scholia
  83. Feltenmark S, Gautam N, Brunnström A, Griffiths W, Backman L, Edenius C, Lindbom L, Björkholm M, Claesson HE; ''Eoxins are proinflammatory arachidonic acid metabolites produced via the 15-lipoxygenase-1 pathway in human eosinophils and mast cells.''; Proc Natl Acad Sci U S A, 2008 PubMed Europe PMC Scholia
  84. Wei J, Chen S, Guo W, Feng B, Yang S, Huang C, Chu J; ''Leukotriene D4 induces cellular senescence in osteoblasts.''; Int Immunopharmacol, 2018 PubMed Europe PMC Scholia
  85. Westlund P, Granström E, Kumlin M, Nordenström A; ''Identification of 11-dehydro-TXB2 as a suitable parameter for monitoring thromboxane production in the human.''; Prostaglandins, 1986 PubMed Europe PMC Scholia
  86. Stark K, Bylund J, Törmä H, Sahlén G, Oliw EH; ''On the mechanism of biosynthesis of 19-hydroxyprostaglandins of human seminal fluid and expression of cyclooxygenase-2, PGH 19-hydroxylase (CYP4F8) and microsomal PGE synthase-1 in seminal vesicles and vas deferens.''; Prostaglandins Other Lipid Mediat, 2005 PubMed Europe PMC Scholia
  87. M K Patel, C E Evans, F A McEvoy; ''''; , PubMed Europe PMC Scholia
  88. A. Hari Kishore, David Owen, R. Ann Word; ''''; , PubMed Europe PMC Scholia
  89. Serhan CN, Libreros S, Nshimiyimana R; ''E-series resolvin metabolome, biosynthesis and critical role of stereochemistry of specialized pro-resolving mediators (SPMs) in inflammation-resolution: Preparing SPMs for long COVID-19, human clinical trials, and targeted precision nutrition.''; Semin Immunol, 2022 PubMed Europe PMC Scholia
  90. Gazi L, Gyles S, Rose J, Lees S, Allan C, Xue L, Jassal R, Speight G, Gamble V, Pettipher R; ''Delta12-prostaglandin D2 is a potent and selective CRTH2 receptor agonist and causes activation of human eosinophils and Th2 lymphocytes.''; Prostaglandins Other Lipid Mediat, 2005 PubMed Europe PMC Scholia
  91. Anyona SB, Kempaiah P, Davenport GC, Vulule JM, Hittner JB, Ong'echa JM, Perkins DJ; ''Suppressed circulating bicyclo-PGE2 levels and leukocyte COX-2 transcripts in children co-infected with P. falciparum malaria and HIV-1 or bacteremia.''; Biochem Biophys Res Commun, 2013 PubMed Europe PMC Scholia
  92. P J Lewis, C T Dollery; ''''; , PubMed Europe PMC Scholia
  93. Samar Basu; ''Novel cyclooxygenase-catalyzed bioactive prostaglandin F2a from physiology to new principles in inflammation.''; Medicinal Research Reviews, 2006
  94. Hedi H, Norbert G; ''5-Lipoxygenase Pathway, Dendritic Cells, and Adaptive Immunity.''; J Biomed Biotechnol, 2004 PubMed Europe PMC Scholia
  95. Song WL, Wang M, Ricciotti E, Fries S, Yu Y, Grosser T, Reilly M, Lawson JA, FitzGerald GA; ''Tetranor PGDM, an Abundant Urinary Metabolite Reflects Biosynthesis of Prostaglandin D2 in Mice and Humans''; Journal of Biological Chemistry, 2008
  96. Gabbs M, Leng S, Devassy JG, Monirujjaman M, Aukema HM; ''Advances in Our Understanding of Oxylipins Derived from Dietary PUFAs.''; Adv Nutr, 2015 PubMed Europe PMC Scholia
  97. R T Okita, J R Okita; ''''; , PubMed Europe PMC Scholia
  98. Brunnström Å, Tryselius Y, Feltenmark S, Andersson E, Leksell H, James A, Mannervik B, Dahlén B, Claesson HE; ''On the biosynthesis of 15-HETE and eoxin C4 by human airway epithelial cells.''; Prostaglandins Other Lipid Mediat, 2015 PubMed Europe PMC Scholia
  99. Serhan CN, Dalli J, Colas RA, Winkler JW, Chiang N; ''Protectins and maresins: New pro-resolving families of mediators in acute inflammation and resolution bioactive metabolome.''; Biochim Biophys Acta, 2015 PubMed Europe PMC Scholia
  100. Durand T, Bultel-Poncé V, Guy A, El Fangour S, Rossi JC, Galano JM; ''Isoprostanes and phytoprostanes: Bioactive lipids.''; Biochimie, 2011 PubMed Europe PMC Scholia
  101. Carlo Patrono, Bianca Rocca; ''Measurement of Thromboxane Biosynthesis in Health and Disease''; Front Pharmacol., 2019 PubMed Europe PMC Scholia
  102. Ferreira I, Falcato F, Bandarra N, Rauter AP; ''Resolvins, Protectins, and Maresins: DHA-Derived Specialized Pro-Resolving Mediators, Biosynthetic Pathways, Synthetic Approaches, and Their Role in Inflammation.''; Molecules, 2022 PubMed Europe PMC Scholia
  103. Lu Yao, Weina Chen, Kyoungsub Song, Chang Han, Chandrashekhar R. Gandhi, Kyu Lim, Tong Wu; ''''; , PubMed Europe PMC Scholia
  104. Libreros S, Shay AE, Nshimiyimana R, Fichtner D, Martin MJ, Wourms N, Serhan CN; ''A New E-Series Resolvin: RvE4 Stereochemistry and Function in Efferocytosis of Inflammation-Resolution.''; Front Immunol, 2020 PubMed Europe PMC Scholia
  105. Hajeyah AA, Griffiths WJ, Wang Y, Finch AJ, O'Donnell VB; ''The Biosynthesis of Enzymatically Oxidized Lipids.''; Front Endocrinol (Lausanne), 2020 PubMed Europe PMC Scholia
  106. Murphy RC, Gijón MA; ''Biosynthesis and metabolism of leukotrienes.''; Biochem J, 2007 PubMed Europe PMC Scholia
  107. Shibata T; ''15-Deoxy-Δ¹²,¹⁴-prostaglandin J₂ as an electrophilic mediator.''; Biosci Biotechnol Biochem, 2015 PubMed Europe PMC Scholia
  108. Ying Zhang, Yi Du, Jian-Feng He, Kai-Jun Li; ''''; , PubMed Europe PMC Scholia
  109. Eilidh M Wood, Kylie K Hornaday, Donna M Slater; ''''; , PubMed Europe PMC Scholia
  110. B Rosenkranz, C Fischer, K E Weimer, J C Frölich; ''Metabolism of prostacyclin and 6-keto-prostaglandin F1 alpha in man''; , 1980 PubMed Europe PMC Scholia
  111. Reddanna P, Prabhu KS, Whelan J, Reddy CC; ''Carboxypeptidase A-catalyzed direct conversion of leukotriene C4 to leukotriene F4.''; Arch Biochem Biophys, 2003 PubMed Europe PMC Scholia
  112. Lagarde M, Bernoud-Hubac N, Calzada C, Véricel E, Guichardant M; ''Lipidomics of essential fatty acids and oxygenated metabolites.''; Mol Nutr Food Res, 2013 PubMed Europe PMC Scholia
  113. F A Fitzpatrick, R Aguirre, J E Pike, F H Lincoln; ''''; , PubMed Europe PMC Scholia
  114. Tang S, Wan M, Huang W, Stanton RC, Xu Y; ''Maresins: Specialized Proresolving Lipid Mediators and Their Potential Role in Inflammatory-Related Diseases.''; Mediators Inflamm, 2018 PubMed Europe PMC Scholia
  115. Salomon RG; ''Distinguishing levuglandins produced through the cyclooxygenase and isoprostane pathways.''; Chem Phys Lipids, 2005 PubMed Europe PMC Scholia
  116. Mainka M, George S, Angioni C, Ebert R, Goebel T, Kampschulte N, Krommes A, Weigert A, Thomas D, Schebb NH, Steinhilber D, Kahnt AS; ''On the biosynthesis of specialized pro-resolvingmediators in human neutrophils and the influence of cell integrity.''; Biochim Biophys Acta Mol Cell Biol Lipids, 2022 PubMed Europe PMC Scholia
  117. Kim KM, Jung BH, Paeng KJ, Kim I, Chung BC; ''Increased urinary F(2)-isoprostanes levels in the patients with Alzheimer's disease.''; Brain Res Bull, 2004 PubMed Europe PMC Scholia
  118. Koletzko B, Reischl E, Tanjung C, Gonzalez-Casanova I, Ramakrishnan U, Meldrum S, Simmer K, Heinrich J, Demmelmair H; ''FADS1 and FADS2 Polymorphisms Modulate Fatty Acid Metabolism and Dietary Impact on Health.''; Annu Rev Nutr, 2019 PubMed Europe PMC Scholia
  119. Freund A, Patil CK, Campisi J; ''p38MAPK is a novel DNA damage response-independent regulator of the senescence-associated secretory phenotype.''; EMBO J, 2011 PubMed Europe PMC Scholia
  120. Gol S, Pena RN, Rothschild MF, Tor M, Estany J; ''A polymorphism in the fatty acid desaturase-2 gene is associated with the arachidonic acid metabolism in pigs.''; Sci Rep, 2018 PubMed Europe PMC Scholia
  121. Peskar BA, Cawello W, Rogatti W, Rudofsky G; ''On the metabolism of prostaglandin E1 administered intravenously to human volunteers.''; J Physiol Pharmacol, 1991 PubMed Europe PMC Scholia
  122. D F Woodward, C E Protzman, A H Krauss, L S Williams; ''''; , PubMed Europe PMC Scholia
  123. Allison E. Norlander, R. Stokes Peebles; ''''; , PubMed Europe PMC Scholia
  124. Roberts LJ 2nd, Fessel JP, Davies SS; ''The biochemistry of the isoprostane, neuroprostane, and isofuran Pathways of lipid peroxidation.''; Brain Pathol, 2005 PubMed Europe PMC Scholia
  125. Wen-Ling Chou, Lee-Ming Chuang, Chi-Chi Chou, Andrew H.-J. Wang, John A. Lawson, Garret A. FitzGerald, Zee-Fen Chang; ''Identification of a Novel Prostaglandin Reductase Reveals the Involvement of Prostaglandin E2 Catabolism in Regulation of Peroxisome Proliferator-activated Receptor γ Activation.''; Journal of Biological Chemistry, 2007
  126. Nanae Nagata, Yukiko Kusakari, Yoshifumi Fukunishi, Tsuyoshi Inoue, Yoshihiro Urade; ''Catalytic mechanism of the primary human prostaglandin F2a synthase,aldo-keto reductase 1B1--prostaglandin D2 synthase activity in the absence of NADP(H)''; PubMed, 2011 PubMed Europe PMC Scholia
  127. Wen-Liang Song, Miao Wang, Emanuela Ricciotti, Susanne Fries: Ying Yu, Tilo Grosser, Muredach Reilly, John A Lawson, Garret A FitzGerald; ''Tetranor PGDM, an abundant urinary metabolite reflects biosynthesis of prostaglandin D2 in mice and humans''; , 2008 PubMed Europe PMC Scholia
  128. Sprecher H, VanRollins M, Sun F, Wyche A, Needleman P; ''Dihomo-prostaglandins and -thromboxane. A prostaglandin family from adrenic acid that may be preferentially synthesized in the kidney.''; J Biol Chem, 1982 PubMed Europe PMC Scholia
  129. Katayama S, Maruno Y, Itabashi A, Inaba M, Akabane S, Tanaka K, Shibuya M, Kawazu S, Ishii J; ''Effect of dietary calcium on renal prostaglandins.''; Prostaglandins Leukot Essent Fatty Acids, 1991 PubMed Europe PMC Scholia
  130. Lee BR, Paing MH, Sharma-Walia N; ''Cyclopentenone Prostaglandins: Biologically Active Lipid Mediators Targeting Inflammation.''; Front Physiol, 2021 PubMed Europe PMC Scholia
  131. Chung-Ying K Chen, Elizabeth M Poole, Cornelia M Ulrich, Richard J Kulmacz, Lee-Ho Wang; ''''; , PubMed Europe PMC Scholia
  132. T Suzuki-Yamamoto, M Nishizawa, M Fukui, E Okuda-Ashitaka, T Nakajima, S Ito, K Watanabe; ''cDNA cloning, expression and characterization of human prostaglandin F synthase''; National Library of Medicine, 1999 PubMed Europe PMC Scholia
  133. Reich EE, Markesbery WR, Roberts LJ 2nd, Swift LL, Morrow JD, Montine TJ; ''Brain regional quantification of F-ring and D-/E-ring isoprostanes and neuroprostanes in Alzheimer's disease.''; Am J Pathol, 2001 PubMed Europe PMC Scholia
  134. Kahnt AS, Schebb NH, Steinhilber D; ''Formation of lipoxins and resolvins in human leukocytes.''; Prostaglandins Other Lipid Mediat, 2023 PubMed Europe PMC Scholia
  135. Zhuang XY, Zhang YH, Xiao AF, Zhang AH, Fang BS; ''Key Enzymes in Fatty Acid Synthesis Pathway for Bioactive Lipids Biosynthesis.''; Front Nutr, 2022 PubMed Europe PMC Scholia
  136. T E Liston, L J Roberts; ''Transformation of prostaglandin D2 to 9 alpha,11 beta-(15S)-trihydroxyprosta-(5Z,13E)-dien-1-oic acid (9 alpha,11 beta-prostaglandin F2): a unique biologically active prostaglandin produced enzymatically in vivo in humans.''; National Library of Medicine, 1985 PubMed Europe PMC Scholia
  137. Klarissa D. Hardy, Brian E. Cox, Ginger L. Milne, Huiyong Yin, L. Jackson Roberts; ''Nonenzymatic free radical-catalyzed generation of 15-deoxy-delta-12,14-prostaglandin J2-like compounds (deoxy-J2-isoprostanes) in vivo''; National Library of Medicine, 2011 PubMed Europe PMC Scholia
  138. Harkewicz R, Fahy E, Andreyev A, Dennis EA; ''Arachidonate-derived dihomoprostaglandin production observed in endotoxin-stimulated macrophage-like cells.''; J Biol Chem, 2007 PubMed Europe PMC Scholia
  139. Djuricic I, Calder PC; ''Beneficial Outcomes of Omega-6 and Omega-3 Polyunsaturated Fatty Acids on Human Health: An Update for 2021.''; Nutrients, 2021 PubMed Europe PMC Scholia
  140. Milne GL, Dai Q, Roberts LJ 2nd; ''The isoprostanes--25 years later.''; Biochim Biophys Acta, 2015 PubMed Europe PMC Scholia
  141. Bengt Samuelsson, Ralf Morgenstern, Per-Johan Jakobsson; ''Membrane prostaglandin E synthase -1: a novel therapeutic target''; PubMed, 2007 PubMed Europe PMC Scholia
  142. Yin H, Morrow JD, Porter NA; ''Identification of a novel class of endoperoxides from arachidonate autoxidation.''; J Biol Chem, 2004 PubMed Europe PMC Scholia
  143. Helena Idborg, Sven-Christian Pawelzik; ''Prostanoid Metabolites as Biomarkers in Human Disease''; , 2022 PubMed Europe PMC Scholia
  144. Gao L, Yin H, Milne GL, Porter NA, Morrow JD; ''Formation of F-ring isoprostane-like compounds (F3-isoprostanes) in vivo from eicosapentaenoic acid.''; J Biol Chem, 2006 PubMed Europe PMC Scholia
  145. Anggård E, Oliw E; ''Formation and metabolism of prostaglandins in the kidney.''; Kidney Int, 1981 PubMed Europe PMC Scholia
  146. Maria E. Figueiredo-Pereira, Chuhyon Corwin, John Babich2; ''Prostaglandin J2: a potential target for halting inflammation-induced neurodegeneration''; , 2016 PubMed Europe PMC Scholia
  147. P Y Cheung, J R Challis; ''Prostaglandin E2 metabolism in the human fetal membranes.''; American Journal of Obstetrics & Gynecology, 1989 PubMed Europe PMC Scholia
  148. Steffen Braune, Jan-Heiner Küpper, Friedrich Jung; ''Effect of Prostanoids on Human Platelet Function: An Overview''; , 2020 PubMed Europe PMC Scholia
  149. F A Fitzpatrick, M A Wynalda; ''Albumin-catalyzed metabolism of prostaglandin D2. Identification of products formed in vitro''; PubMed, 1983 PubMed Europe PMC Scholia
  150. A NORMAN; ''Eicosanoids''; Hormones :171-188, 2015
  151. Zdanov S, Bernard D, Debacq-Chainiaux F, Martien S, Gosselin K, Vercamer C, Chelli F, Toussaint O, Abbadie C; ''Normal or stress-induced fibroblast senescence involves COX-2 activity.''; Exp Cell Res, 2007 PubMed Europe PMC Scholia
  152. Salomon RG, Subbanagounder G, O'Neil J, Kaur K, Smith MA, Hoff HF, Perry G, Monnier VM; ''Levuglandin E2-protein adducts in human plasma and vasculature.''; Chem Res Toxicol, 1997 PubMed Europe PMC Scholia
  153. Dyall SC, Balas L, Bazan NG, Brenna JT, Chiang N, da Costa Souza F, Dalli J, Durand T, Galano JM, Lein PJ, Serhan CN, Taha AY; ''Polyunsaturated fatty acids and fatty acid-derived lipid mediators: Recent advances in the understanding of their biosynthesis, structures, and functions.''; Prog Lipid Res, 2022 PubMed Europe PMC Scholia
  154. Miyamoto T, Ogino N, Yamamoto S, Hayaishi O; ''Purification of prostaglandin endoperoxide synthetase from bovine vesicular gland microsomes.''; J Biol Chem, 1976 PubMed Europe PMC Scholia
  155. Martien S, Pluquet O, Vercamer C, Malaquin N, Martin N, Gosselin K, Pourtier A, Abbadie C; ''Cellular senescence involves an intracrine prostaglandin E2 pathway in human fibroblasts.''; Biochim Biophys Acta, 2013 PubMed Europe PMC Scholia
  156. Gonçalves S, Yin K, Ito Y, Chan A, Olan I, Gough S, Cassidy L, Serrao E, Smith S, Young A, Narita M, Hoare M; ''COX2 regulates senescence secretome composition and senescence surveillance through PGE(2).''; Cell Rep, 2021 PubMed Europe PMC Scholia
  157. Li QF, Hao H, Tu WS, Guo N, Zhou XY; ''Maresins: anti-inflammatory pro-resolving mediators with therapeutic potential.''; Eur Rev Med Pharmacol Sci, 2020 PubMed Europe PMC Scholia
  158. Petrie JR, Shrestha P, Liu Q, Mansour MP, Wood CC, Zhou XR, Nichols PD, Green AG, Singh SP; ''Rapid expression of transgenes driven by seed-specific constructs in leaf tissue: DHA production.''; Plant Methods, 2010 PubMed Europe PMC Scholia
  159. Peiqing Sun, Naoto Yoshizuka, Liguo New, Bettina A. Moser, Yilei Li, Rong Liao, Changchuan Xie, Jianming Chen, Qingdong Deng, Maria Yamout, Meng-Qiu Dong, Costas G. Frangou, John R. Yates III, Peter E. Wright, Jiahuai Han; ''PRAK Is Essential for ras-Induced Senescence and Tumor Suppression''; ScienceDirect, 2007 PubMed Europe PMC Scholia
  160. Biringer RG; ''A review of non-prostanoid, eicosanoid receptors: expression, characterization, regulation, and mechanism of action.''; J Cell Commun Signal, 2022 PubMed Europe PMC Scholia
  161. Hernandez-Segura A, Nehme J, Demaria M; ''Hallmarks of Cellular Senescence.''; Trends Cell Biol, 2018 PubMed Europe PMC Scholia
  162. Vidar Hansen T, Serhan CN; ''Protectins: Their biosynthesis, metabolism and structure-functions.''; Biochem Pharmacol, 2022 PubMed Europe PMC Scholia
  163. Musiek ES, Cha JK, Yin H, Zackert WE, Terry ES, Porter NA, Montine TJ, Morrow JD; ''Quantification of F-ring isoprostane-like compounds (F4-neuroprostanes) derived from docosahexaenoic acid in vivo in humans by a stable isotope dilution mass spectrometric assay.''; J Chromatogr B Analyt Technol Biomed Life Sci, 2004 PubMed Europe PMC Scholia
  164. Cormenier J, Martin N, Desl�ƒÆ’�†â€™�ƒâ€ �¢â‚¬â„¢�ƒÆ’�¢â‚¬Å¡�ƒâ€š�‚© J, Salazar-Cardozo C, Pourtier A, Abbadie C, Pluquet O; ''The ATF6�ƒÆ’�†â€™�ƒâ€¦�‚½�ƒÆ’�¢â‚¬Å¡�ƒâ€š�‚± arm of the Unfolded Protein Response mediates replicative senescence in human fibroblasts through a COX2/prostaglandin E2intracrine pathway.''; Mech Ageing Dev, 2018 PubMed Europe PMC Scholia
  165. Palla AR, Ravichandran M, Wang YX, Alexandrova L, Yang AV, Kraft P, Holbrook CA, Schürch CM, Ho ATV, Blau HM; ''Inhibition of prostaglandin-degrading enzyme 15-PGDH rejuvenates aged muscle mass and strength.''; Science, 2021 PubMed Europe PMC Scholia
  166. Xiaoping Wang, Huanping Lin, Yan Gu; ''''; , PubMed Europe PMC Scholia
  167. Christopher D. Wiley, Rishi Sharma, Sonnet S. Davis, Marco Demaria, Arvind Ramanathan, Judith Campisi; ''Oxylipin biosynthesis reinforces cellular senescence and allows detection of senolysis.''; Cell Metabolism, 2021
  168. Sala A, Voelkel N, Maclouf J, Murphy RC; ''Leukotriene E4 elimination and metabolism in normal human subjects.''; J Biol Chem, 1990 PubMed Europe PMC Scholia
  169. Joachim Fauler, Dimitrios Tsikas, Ertan Mayatepek, Dietrich Keppler, Jurgen C. Frolich; ''Impaired Degradation of Prostaglandins and Thromboxane in Zellweger Syndrome''; International Pediatric Research Foundation, 1994
  170. Samar Basu; ''''; , PubMed Europe PMC Scholia
  171. Yang P, Jiang Y, Fischer SM; ''Prostaglandin E3 metabolism and cancer.''; Cancer Lett, 2014 PubMed Europe PMC Scholia
  172. Serhan CN, Levy BD; ''Resolvins in inflammation: emergence of the pro-resolving superfamily of mediators.''; J Clin Invest, 2018 PubMed Europe PMC Scholia
  173. R P Goodman, A P Killam, A R Brash, R A Branch; ''Prostacyclin production during pregnancy: Comparison of production during normal pregnancy and pregnancy complicated by hypertension''; , 1982 PubMed Europe PMC Scholia
  174. Reich EE, Zackert WE, Brame CJ, Chen Y, Roberts LJ 2nd, Hachey DL, Montine TJ, Morrow JD; ''Formation of novel D-ring and E-ring isoprostane-like compounds (D4/E4-neuroprostanes) in vivo from docosahexaenoic acid.''; Biochemistry, 2000 PubMed Europe PMC Scholia
  175. Adachi H, Kubota I, Okamura N, Iwata H, Tsujimoto M, Nakazato H, Nishihara T, Noguchi T; ''Purification and characterization of human microsomal dipeptidase.''; J Biochem, 1989 PubMed Europe PMC Scholia
  176. William L Smith; ''Cyclooxygenases, peroxide tone and the allure of fish oil''; Curr Opin Cell Biol, 2005 PubMed Europe PMC Scholia
  177. Hahn, Elisabeth L. PhD, He, Li-Ke MD, Gamelli, and Richard L. MD; ''Prostaglandin E2 Synthesis and Metabolism in Burn Injury and Trauma''; https://journals.lww.com/jtrauma/Fulltext/2000/12000/Prostaglandin_E2_Synthesis_and_Metabolism_in_Burn.33.aspx,
  178. Reinertsen AF, Primdahl KG, Shay AE, Serhan CN, Hansen TV, Aursnes M; ''Stereoselective Synthesis and Structural Confirmation of the Specialized Pro-Resolving Mediator Resolvin E4.''; J Org Chem, 2021 PubMed Europe PMC Scholia
  179. Nourooz-Zadeh J, Cooper MB, Ziegler D, Betteridge DJ; ''Urinary 8-epi-PGF2alpha and its endogenous beta-oxidation products (2,3-dinor and 2,3-dinor-5,6-dihydro) as biomarkers of total body oxidative stress.''; Biochem Biophys Res Commun, 2005 PubMed Europe PMC Scholia
  180. Deng B, Wang CW, Arnardottir HH, Li Y, Cheng CY, Dalli J, Serhan CN; ''Maresin biosynthesis and identification of maresin 2, a new anti-inflammatory and pro-resolving mediator from human macrophages.''; PLoS One, 2014 PubMed Europe PMC Scholia
  181. Kramer RM, Roberts EF, Um SL, Börsch-Haubold AG, Watson SP, Fisher MJ, Jakubowski JA; ''p38 mitogen-activated protein kinase phosphorylates cytosolic phospholipase A2 (cPLA2) in thrombin-stimulated platelets. Evidence that proline-directed phosphorylation is not required for mobilization of arachidonic acid by cPLA2.''; J Biol Chem, 1996 PubMed Europe PMC Scholia
  182. Yung-Sheng Huang, Wen-Cheng Huang, Chi-Wei LI, Lu-Te Chuang; ''''; , PubMed Europe PMC Scholia
  183. Kortlever RM, Higgins PJ, Bernards R; ''Plasminogen activator inhibitor-1 is a critical downstream target of p53 in the induction of replicative senescence.''; Nat Cell Biol, 2006 PubMed Europe PMC Scholia
  184. K Watanabe, Y Iguchi, S Iguchi, Y Arai, O Hayaishi, L J Roberts; ''Stereospecific conversion of prostaglandin D2 to (5Z,13E)-(15S)-9 alpha-11 beta,15-trihydroxyprosta-5,13-dien-1-oic acid (9 alpha,11 beta-prostaglandin F2) and of prostaglandin H2 to prostaglandin F2 alpha by bovine lung prostaglandin F synthase.''; National Library of Medicine, 1986 PubMed Europe PMC Scholia
  185. Li QF, Hao H, Tu WS, Guo N, Zhou XY; ''Maresins: anti-inflammatory pro-resolving mediators with therapeutic potential''; https://www.europeanreview.org/wp/wp-content/uploads/7442-7453.pdf, 2020
  186. Wen-Ling Chou, Lee-Ming Chuang, Chi-Chi Chou, Andrew H-J Wang, John A Lawson, Garret A FitzGerald, Zee-Fen Chang; ''Identification of a Novel Prostaglandin Reductase Reveals the Involvement of Prostaglandin E2 Catabolism in Regulation of Peroxisome Proliferator-activated Receptor γ Activation''; , 2007 PubMed Europe PMC Scholia
  187. Granström E, Fitzpatrick FA, Kindahl H; ''Radioimmunologic determination of 15-keto-13,14-dihydro-PGE2: a method for its stable degradation product, 11-deoxy-15-keto-13,14-dihydro-11 beta, 16 xi-cyclo-PGE2.''; Methods Enzymol, 1982 PubMed Europe PMC Scholia

History

View all...
CompareRevisionActionTimeUserComment
134415view22:53, 21 July 2024EweitzModified description
134273view07:05, 19 July 2024EgonwRemoved template comments
129383view18:52, 29 March 2024Nikita KrstevskaAddition of missing Ensembl identifiers
129101view14:29, 11 March 2024Nikita KrstevskaAddition of isoforms NAT1 and NAT2 in LTE4 -> N-acetyl LTE4 reaction
128985view14:11, 27 February 2024Nikita KrstevskaUpdating a comment on the LTB4 -> 20-OXO-LTB4 reaction.
128703view22:00, 20 February 2024EgonwCorrected the EC format
128691view20:08, 19 February 2024EgonwRemoved redundant RHEA: prefixes in 27 interaction identifiers
128662view16:10, 18 February 2024Nikita KrstevskaModification of text labels of the gene products 'PGA isomerase' and 'PGC isomerase'
128639view17:52, 17 February 2024Nikita KrstevskaAddition of missing gene product identifiers
128612view12:30, 16 February 2024Nikita KrstevskaAddition of missing gene IDs
128601view19:39, 15 February 2024Nikita KrstevskaAddition of missing gene product annotations
128579view11:07, 14 February 2024Nikita KrstevskaModification of glutathione cofactor
128559view18:33, 12 February 2024Nikita KrstevskaAnnotation of missing gene product IDs
128502view13:49, 10 February 2024Nikita KrstevskaPositive feedback loop of dihomo-15d-PGJ2
128091view16:57, 25 January 2024JuliaUMRHEA IDs for PGs
128089view13:47, 25 January 2024DeSlOntology Term : 'fatty acid omega degradation pathway' added !
128087view13:45, 25 January 2024DeSlOntology Term : 'lipid metabolic pathway' added !
127870view13:10, 3 January 2024AndreapascaudModified title
127831view12:52, 22 December 2023JuliaUMCorrection of reaction + IDs
127820view12:44, 19 December 2023JuliaUMHX and TRX were added
127803view14:02, 16 December 2023EgonwCorrected the format of a few EC identifiers
127802view13:58, 16 December 2023EgonwMade multiple pathways clickable
127800view13:46, 16 December 2023EgonwIP3 is not a complex itself
127793view15:14, 14 December 2023JuliaUMNew reaction + IDs
127792view18:00, 13 December 2023JuliaUMNew LX and LT reactions
127791view13:02, 13 December 2023JuliaUMNew LT reactions + new IDs
127789view16:56, 12 December 2023JuliaUMFinish of the map splitting + rearrangement + eoxins were added
127778view15:51, 6 December 2023JuliaUMsmall changes in reactions
127777view09:08, 6 December 2023JuliaUMSmall changes in PG reaction
127703view17:23, 23 November 2023JuliaUMNew references + minor corrections in the LT pathway
127702view08:36, 23 November 2023JuliaUMSmall changes in the reactions
127677view17:29, 20 November 2023JuliaUMNew IDs + minimized duplicated nodes
127676view12:36, 20 November 2023JuliaUMAddition of a legend
127670view15:11, 16 November 2023JuliaUMNew Maresins & protectins (DPA)
127669view13:05, 16 November 2023JuliaUMDeletion/Addition of PG reactions + references
127668view12:27, 16 November 2023Mra1221Modified title
127663view08:47, 15 November 2023JuliaUMMore references for isoprostanes + change to hypothetical reaction in comments
127656view07:58, 14 November 2023JuliaUMNew IDs + references for Isoprostanes
127632view14:46, 10 November 2023JuliaUMNew Isoprostanes + IDs
127631view09:47, 10 November 2023JuliaUMNew Isoprostanes + IDs
127627view17:11, 9 November 2023JuliaUMMore consistency in senescence links + isoprostanes
127626view13:58, 9 November 2023JuliaUMMore consistency in senescence links
127615view19:25, 7 November 2023JuliaUMNew IDs + some changes in resolvin T
127604view08:23, 7 November 2023JuliaUMOntology Term : 'cellular senescence pathway' added !
127591view07:17, 29 October 2023EgonwNot a mim-conversion
127589view08:52, 27 October 2023AndreapascaudAddition of CHEBI IDs to the metabolites
127588view17:55, 26 October 2023JuliaUMSmall changes on DH-PG reactions + new IDs for enzymes
127587view11:40, 26 October 2023EgonwFixed a few EC numbers (syntax)
127584view10:09, 25 October 2023AndreapascaudUpdate Protectins
127583view09:49, 25 October 2023AndreapascaudUpdate

External references

DataNodes

View all...
NameTypeDatabase referenceComment
11,15-dioxo-9α-hydroxy-, 2,3,4,5-tetranorprostan-1,20-dioic acid*Metabolite
11-Deyhdro-Thromboxane B2MetaboliteCHEBI:28667 (ChEBI)
11-OH-dehydrogenaseEC 1.2.1.3 (Enzyme Nomenclature)
11-deoxy-13,14-dihydro-15-keto-11,16-cyclo-PGE2*Metabolite
11-hydroxy-9,15-dioxo-prost-5-en-1,20-dioic acid*Metabolite
13,14-dihydro-15-keto-PGA2MetaboliteCHEBI:89315 (ChEBI) 8: Prostanoid Metabolites as Biomarkers in Human Disease Helena Idborg; Sven-Christian Pawelzik. 2022. PubMed 36005592.
13,14-dihydro-15-keto-PGD2 MetaboliteCHEBI:72603 (ChEBI) DK-PGD2
13,14-dihydro-15-keto-PGE2MetaboliteCHEBI:15550 (ChEBI) PGEM= Metabolites downstream of PGE2
13,14-dihydro-PGE2*Metabolite
13,14-dihydro-PGF2aMetabolite88346 (ChEBI)
15-PGDHGeneProductEC 1.1.1.141 (Enzyme Nomenclature) 15-PGDH=15-hydroxy-prostaglandin dehydrogenase
15-deoxy-Δ12,14-PGD2MetaboliteCHEBI:63999 (ChEBI) =15d-PGJ2
15-deoxy-Δ12,14-PGJ2Metabolite34159 (ChEBI) =15d-PGJ2
15-hydroxy PG dehydrogenase*

prostaglandin Δreductase*

β-oxidase*
GeneProduct
15-keto-13,14-dihydro-8-iso-PGF2aMetabolite191919-02-5 (CAS)
15-keto-13,14-dihydro-PGE1Metabolite134499 (ChEBI)
15-keto-13,14-dihydro-PGE1MetaboliteCHEBI:134499 (ChEBI)
15-keto-13,14-dihydro-PGF2aMetabolite63976 (ChEBI)
15-keto-8-iso-PGF2aMetabolite191919-01-4 (CAS)
15-keto-PGD2MetaboliteCHEBI:15557 (ChEBI)
15-keto-PGE1Metabolite22973-19-9 (CAS)
15-keto-PGE2Metabolite15547 (ChEBI)
15-keto-PGF2aMetaboliteCHEBI:28442 (ChEBI)
15-keto-PGI2MetaboliteCHEBI:15556 (ChEBI) =15-dehydro-Prostaglandin I2
15-ketoprostaglandin reductaseGeneProductEC 1.3.1.48 (Enzyme Nomenclature)
19-OH-6-keto-PGF1aMetabolite172589 (ChEBI)
19-OH-PGE1Metabolite55123-67-6 (CAS)
19-OH-PGE2MetaboliteCHEBI:165313 (ChEBI)
19-OH-PGH2*Metabolite
2,3 dinor-6-keto-PGF1a*Metabolite73944 (ChEBI)
2,3-Dinor-Thromboxane B2MetaboliteCHEBI:89991 (ChEBI)
2,3-dinor 6-keto pentanor*Metabolite
2,3-dinor-11β-PGF2*MetaboliteCHEBI:165323 (ChEBI)
2,3-dinor-5,6-dihydro-8-IsoPGF2aMetabolite
2,3-dinor-8-IsoPGF2aMetabolite
20-OH-LTB4MetaboliteCHEBI:15646 (ChEBI)
4,13-diketo-7,9-dihydroxy-2,3-dinor prostanoic acid*Metabolite4,13-diketo-7,9-dihydroxy-2,3-dinor prostanoic acid =dinor-6,15-diketo-9,11-dihydroxy prostanoic acid
5-HETEMetabolite
5-HPETEMetaboliteHMDB11135 (HMDB)
5-series leukotrienesPathway
5α,7α-dihydroxy-11-keto tetranor-prostane-1,16-dioic acid*Metabolite
6,15-Diketo-13,14-dihydro-2,3-dinor PGF1a*Metabolite6,15-Diketo-13,14-dihydro-2,3-dinor PGF1a = 15 kd dinor
6,15-Diketo-13,14-dihydro-PGF1a*MetaboliteCHEBI:72595 (ChEBI)
6,15-diketo PGF1aMetabolite
6-keto-PGE1Metabolite28269 (ChEBI)
6-keto-PGF1aMetabolite28158 (ChEBI)
6-trans-LTB4MetaboliteCHEBI:63981 (ChEBI)
7α-hydroxy-5,11-diketo-tetranorprosta-1,16-dioc acid*Metabolite
8-iso-13,14-dihydro-15-keto-PGE2*Metabolite
8-iso-PGF2aMetabolite27415-26-5 (CAS) 8-Isoprostane=8-epi-Prostaglandin F2alpha
9,15-dideoxy-Δ9,12,14-PGD2*Metabolite
9-deoxy-Δ12-PGD2*Metabolite175297 (ChEBI)
9-hydroxyprostaglandin dehydrogenaseGeneProduct
9a, 11a-dihydroxy-11-keto-2,3,4,5-tetranorprostane-1,16-dioic acid*Metabolite
9alpha,11alpha-PGF2aMetaboliteCHEBI:15553 (ChEBI)
9alpha,11beta-PGF2Metabolite15553 (ChEBI)
9α, 11β-dihydroxy-15-oxo-2,3,18,19-tetranorprost-5-ene-1,20-dioic acid*Metabolite
A2-IsoPMetaboliteIso-Prostaglandin A2
ABCC4GeneProductENSG00000125257 (Ensembl)
AKR1B1GeneProductENSG00000085662 (Ensembl) =aldo-keto reductase family 1 member B
AKR1C3GeneProductENSG00000196139 (Ensembl) =NADPH-dependent PGD2 11-ketoreductase

=aldo-keto reductase family 1 member C3

=EC 1.1.1.188
ALOX12
ALOX15
ALOX5GeneProductENSG00000012779 (Ensembl) =arachidonate 5-lipoxygenase
Adrenic acid (22:4,w6)Metabolite53487 (ChEBI)
Albumin-mediated degradationComplex
Arachidonic Acid (20:4,w6)Metabolite15843 (ChEBI)
Beta-oxidation
CYP4F8GeneProductENSG00000186526 (Ensembl) =cytochrome P450 family 4 subfamily F member 8
CYP8A1GeneProductENSG00000124212 (Ensembl) =prostaglandin I2 synthase =PTGIS
Ca2+calcium
Carbonyl reductase*GeneProduct
Cell Cycle Arrest SenescencePathway
CysLT1RProteinQ9Y271 (Uniprot-TrEMBL) =cysteinyl leukotriene type 1 receptor
Cytosolic phospholipase A2ProteinP47712 (Uniprot-TrEMBL)
D-series resolvinsPathway
D2-IsoKMetaboliteD2-Isoketals
D2-IsoPMetaboliteIso-Prostaglandin D2
DH-15d-Δ12,14-PGD2MetaboliteCHEBI:165317 (ChEBI)
DH-PGD2*Metabolite
DH-PGE2MetaboliteCHEBI:185711 (ChEBI)
DH-PGF1a*Metabolite
DH-PGF2aMetaboliteCHEBI:183014 (ChEBI)
DH-PGG2*Metabolite
DH-PGH2*Metabolite
DH-PGI2MetaboliteCHEBI:165328 (ChEBI)
DH-PGJ2MetaboliteCHEBI:165318 (ChEBI)
DH-TxA2*Metabolite
DH-TxB*Metabolite
DP1ComplexDP=D prostanoid receptors

DP1, a member of the prostanoid family of G protein-coupled receptors, mediates the vasorelaxant and bronchodilator effects. DP2, a G protein-coupled receptor that regulates Th1 and Th2 switching in lymphocytes and is also expressed on eosinophils and basophils.

binds and activates two distinct receptors: DP1 (via Gα(s) → AC) as well as DP2
DP2ComplexDP=D prostanoid receptors

DP1, a member of the prostanoid family of G protein-coupled receptors, mediates the vasorelaxant and bronchodilator effects.

DP2, a G protein-coupled receptor that regulates Th1 and Th2 switching in lymphocytes and is also expressed on eosinophils and basophils
DPEP1GeneProductENSG00000015413 (Ensembl) =Human microsomal dipeptidase (MDP, formerly referred to as dehydropeptidase-I or renal dipeptidase) [EC 3.4.13.11]
DPEP2GeneProductENSG00000167261 (Ensembl)
DehydraseGeneProduct
Dehydration
Dihomo-15d-PGJ2Metabolite16061095 (PubChem-compound) =1a,1b-dihomo-15-deoxy-Δ12,14-prostaglandin J2
Dihomo-y-linolenic acid (DGLA) (20:3,w6)Metabolite= 8,11,14-Eicosatrienoic acid =DGLA
Dinor-4,13-diketo-7,9-dihydroxy-prostan-1,18-dioic acid*Metabolite
Dinor-4,13-diketo-7,9-dihydroxy-prostanoic acid*Metabolite
Dinor-4-keto-7,9,13-trihydroxy-prosta-11,12-enoic acid*Metabolite
Docosahexaenoic acid (DHA) (22:6,w3)MetaboliteCHEBI:36005 (ChEBI)
Docosapentaenoic acid (DPA) (22:5,w3)MetaboliteCHEBI:53488 (ChEBI)
E series resolvinsPathway
E2-IsoKMetaboliteE2-Isoketals
E2-IsoPMetaboliteIso-Prostaglandin E2
EETsPathway
ELOVL2GeneProductENSG00000197977 (Ensembl) fatty acid elongase 2
ELOVL5GeneProductENSG00000012660 (Ensembl) fatty acid elongase 5
ELOVL5GeneProductENSG00000012660 (Ensembl Human) fatty acid elongase 5
EP1ComplexPGE2 interacts and exerts its effects through four distinct receptor subtypes on the cell membrane: EP1, EP2, EP3, and EP4. PGE2 can exert its multiple effects by interacting with one of four classes of receptors, EP1, EP2, EP3, or EP4. Interactions with these receptors elevate (EP2 and EP4) or depress (EP3) intracellular levels of cAMP or increase intracellular calcium (EP1). The EP2 and EP4 receptors are linked to stimulation of cyclic AMP (cAMP) and protein kinase A (PKA) signaling through sequential activation of Gαs and adenylate cyclase (AC). EP4 can also activate phosphoinositide-3-kinase (PI3K) through Gαi. The EP1 receptor leads to elevation of intracellular calcium through Gαq. EP3 act to inhibit cAMP generation via Gαi.
EP2ComplexPGE2 interacts and exerts its effects through four distinct receptor subtypes on the cell membrane: EP1, EP2, EP3, and EP4. PGE2 can exert its multiple effects by interacting with one of four classes of receptors, EP1, EP2, EP3, or EP4. Interactions with these receptors elevate (EP2 and EP4) or depress (EP3) intracellular levels of cAMP or increase intracellular calcium (EP1). The EP2 and EP4 receptors are linked to stimulation of cyclic AMP (cAMP) and protein kinase A (PKA) signaling through sequential activation of Gαs and adenylate cyclase (AC). EP4 can also activate phosphoinositide-3-kinase (PI3K) through Gαi. The EP1 receptor leads to elevation of intracellular calcium through Gαq. EP3 act to inhibit cAMP generation via Gαi.
EP3 ComplexPGE2 interacts and exerts its effects through four distinct receptor subtypes on the cell membrane: EP1, EP2, EP3, and EP4. PGE2 can exert its multiple effects by interacting with one of four classes of receptors, EP1, EP2, EP3, or EP4. Interactions with these receptors elevate (EP2 and EP4) or depress (EP3) intracellular levels of cAMP or increase intracellular calcium (EP1). The EP2 and EP4 receptors are linked to stimulation of cyclic AMP (cAMP) and protein kinase A (PKA) signaling through sequential activation of Gαs and adenylate cyclase (AC). EP4 can also activate phosphoinositide-3-kinase (PI3K) through Gαi. The EP1 receptor leads to elevation of intracellular calcium through Gαq. EP3 act to inhibit cAMP generation via Gαi.
EP4 Complexgene=Ptger4
Eicosadienoic acid (20:2,w6)Metabolite
Eicosapentaenoic acid (EPA) (20:5,w3)Metabolite
Eicosatetraenoic acid (ETA) (20:4,w3)MetaboliteCHEBI:166893 (ChEBI)
Eicosatrienoic acid (20:3,w3)Metabolite5312529 (PubChem-compound)
ElongaseGeneProduct
Enzymatic β and w oxidation*
ExcretionPathway
Excretion via urinePathway
FADS1GeneProductENSG00000149485 (Ensembl) Δ5-Desaturase
FADS2GeneProductENSG00000134824 (Ensembl) gene=FADS2 Δ6-Desaturase
FLAPGeneProductENSG00000132965 (Ensembl) gene = ALOX5AP FLAP= 5-lipoxygenase activating protein
FPComplexProstaglandin F receptor : FP

Activation of FP by PGF2α results in the IP3 and DAG formation as well as in the mobilization of Ca2+.

Free radical-catalyzed peroxidation
G2-IsoPMetaboliteIso-Prostaglandin G2
GGT1GeneProductENSG00000100031 (Ensembl)
GGT5GeneProductENSG00000099998 (Ensembl) =gamma-glutamyltransferase 5
GiComplex
GqComplex
GsComplexPGI2 binding to the associated IP receptor (coupled to Gs) leads to an activation of the AC and thus to an increase of intracellular cAMP. Its elevation downregulates store-mediated calcium entry, calcium mobilization and secretion, as well as platelet adhesion to subendothelial collagen via integrin α2β1. The cAMP increase further results in an activation of protein kinase-A (PKA) and in principle, in an inhibition of platelet activation. Analogous to cAMP, PKA activity has been associated with a reduced Ca2+ release from intra-platelet stores
H-PGDS GeneProductENSG00000163106 (Ensembl)
H2-IsoPMetaboliteIso-Prostaglandin H2
HETEsPathway
HPGD GeneProductENSG00000164120 (Ensembl) 15-PGDH=15-hydroxy-prostaglandin dehydrogenase
IPComplexPGI2 binding to the associated IP receptor (coupled to Gs) leads to an activation of the AC and thus to an increase of intracellular cAMP. Its elevation downregulates store-mediated calcium entry, calcium mobilization and secretion, as well as platelet adhesion to subendothelial collagen via integrin α2β1. The cAMP increase further results in an activation of protein kinase-A (PKA) and in principle, in an inhibition of platelet activation. Analogous to cAMP, PKA activity has been associated with a reduced Ca2+ release from intra-platelet stores
IP3Complex
Irradiation-induced SenescencePathway
Irradiation-induced Senescence Oncogene-induced senescence (RAS)Pathway
IsofuranesPathway
IsoprostanesPathway
J2-IsoPMetaboliteIso-Prostaglandin J2
L-PGDS GeneProductENSG00000107317 (Ensembl)
LGD2MetaboliteCHEBI:34820 (ChEBI) Levuglandin D2
LGE2MetaboliteCHEBI:34821 (ChEBI) Levuglandin E2
LTA4MetaboliteCHEBI:15651 (ChEBI)
LTA4HGeneProductENSG00000111144 (Ensembl)
LTB4MetaboliteCHEBI:15647 (ChEBI)
LTC4MetaboliteCHEBI:16978 (ChEBI)
LTC4SGeneProductENSG00000213316 (Ensembl)
LTD4MetaboliteCHEBI:28666 (ChEBI)
LTE4MetaboliteCHEBI:15650 (ChEBI)
Linoleic acid (LA) (18:2,w6)Metabolite17351 (ChEBI) LA (18:2 w6)
Lipoxins EoxinsPathway
MAPK cascadeMetabolite
MaresinsPathway
Membrane phospholipidsMetaboliteCHEBI:16247 (ChEBI)
Non-enzymatic
Non-enzymatic degradation
Non-enzymatic dehydration
Non-enzymatic,albumin-mediated degradation
Oncogene-induced senescence

DNA damage-induced senescence Oxidative stress-induced senescence Replicative senescence

Irradiation-induced senescence
Pathway
Osbond acid (22:5,w6)MetaboliteCHEBI:65136 (ChEBI) =docosapentaenoic acid (DPAω6, 22:5)
PAI-1Protein7 (Uniprot-TrEMBL)
PG-9KRGeneProductENSG00000159228 (Ensembl) PG-9KR= Prostaglandin-9-ketoreductase
PGA IsomeraseGeneProduct
PGA1Metabolite14152-28-4 (CAS)
PGA2Metabolite27820 (ChEBI) PGA2=Prostaglandin A2
PGB1MetaboliteCHEBI:27624 (ChEBI)
PGB2Metabolite28099 (ChEBI) PGB2=Prostaglandin B2
PGC IsomeraseGeneProduct
PGC1MetaboliteCHEBI:15546 (ChEBI)
PGC2Metabolite27555 (ChEBI) PGC2=Prostaglandin C2
PGD1Metabolite27696 (ChEBI)
PGD2Metabolite15555 (ChEBI)
PGD3MetaboliteCHEBI:34939 (ChEBI)
PGDSGeneProductEC 5.3.99.2 (Enzyme Nomenclature)
PGE 19-hydroxylaseGeneProduct
PGE1Metabolite15544 (ChEBI)
PGE2Metabolite15551 (ChEBI)
PGE3MetaboliteCHEBI:28031 (ChEBI)
PGEM (11a-hydroxy-9,15-dioxo-2,3,4,5,20-pentanor-19-carboxyprostanoic acid)MetaboliteCHEBI:73965 (ChEBI)
PGESGeneProductEC 5.3.99.3 (Enzyme Nomenclature)
PGF1aMetabolite28852 (ChEBI)
PGF3aMetaboliteCHEBI:36075 (ChEBI)
PGFSGeneProductEC 1.1.1.188 (Enzyme Nomenclature) =Prostaglandin F synthase
PGG1Metabolite133739 (ChEBI)
PGG2Metabolite27647 (ChEBI) Prostaglandin G2 is abbreviated as PGG2
PGG3MetaboliteCHEBI:134406 (ChEBI)
PGH1Metabolite91133 (ChEBI)
PGH2Metabolite15554 (ChEBI) PGH2 is the abbreviation of PGG2
PGH3MetaboliteCHEBI:134407 (ChEBI)
PGI1*Metabolite
PGI2MetaboliteCHEBI:15552 (ChEBI) Synonym for PGI2 is "Prostacyclin"
PGI3Metabolite
PGISGeneProductEC 5.3.99.4 (Enzyme Nomenclature)
PGJ2Metabolite27485 (ChEBI)
PPARγComplex
PRAK/MAPKAPK5Metabolite
PTGS1GeneProductENSG00000095303 (Ensembl) =Prostaglandin-endoperoxide synthase 1 =cyclooxygenase (COX)
PTGS2GeneProductENSG00000073756 (Ensembl) =prostaglandin-endoperoxide synthase 2 =cyclooxygenase (COX)
Phospholipase (cPLA2α)GeneProduct
Prostaglandin F synthase
Prostaglandin [c]Metabolite
Prostaglandin [e]Metabolite
ProtectinsPathway
RASGeneProduct
RASGeneProductEC 3.6.5.2 (Enzyme Nomenclature)
ROSMetabolite26523 (ChEBI)
Radiation-induced senescencePathway
RbGeneProductENSG00000139687 (Ensembl)
RbGeneProductj (Ensembl Human)
Replicative senescence Radiation-induced senescencePathway
SASPPathway
SASPPathwayWP3391 (WikiPathways)
SIRT1GeneProductENSG00000096717 (Ensembl)
SLCO2A1GeneProductENSG00000174640 (Ensembl)
Senescence phenotypePathway
SenescencePathwayWP615 (WikiPathways)
Spontaneous hydrolysis
Stearidonic acid (SDA) (18:4,w3)MetaboliteCHEBI:32389 (ChEBI)
TBXAS1GeneProductENSG00000059377 (Ensembl) =CYP5A1
TPComplexBeyond its primary agonist TXA2, the TP receptor is also available for its metabolic precursors prostaglandin G2 (PGG2) and prostaglandin H2 (PGH2). Binding of both to TP showed similar platelet responses compared to TXA2
TXASGeneProductEC 5.3.99.5 (Enzyme Nomenclature)
TxA1*Metabolite
TxA3Metabolite
TxAMetaboliteCHEBI:15627 (ChEBI)
TxB1Metabolite71668258 (PubChem-compound)
TxBMetaboliteCHEBI:28728 (ChEBI)
Unknown
a-Linolenic acid (ALA) (18:3,w3)MetaboliteCHEBI:27432 (ChEBI) IUPAC Name: (9Z,12Z,15Z)-octadeca-9,12,15-trienoic acid
alpha-tetranor-15-keto-13,14-dihydro-8-iso-PGF2a*Metabolite
cAMPComplexPGI2 binding to the associated IP receptor (coupled to Gs) leads to an activation of the AC and thus to an increase of intracellular cAMP. Its elevation downregulates store-mediated calcium entry, calcium mobilization and secretion, as well as platelet adhesion to subendothelial collagen via integrin α2β1. The cAMP increase further results in an activation of protein kinase-A (PKA) and in principle, in an inhibition of platelet activation. Analogous to cAMP, PKA activity has been associated with a reduced Ca2+ release from intra-platelet stores
cPGES GeneProductENSG00000110958 (Ensembl) =prostaglandin E synthase 3 (PGTES3)
elongation

delta6 desaturation

beta-oxidation
mPGES-1 GeneProductENSG00000148344 (Ensembl) =microsomal prostaglandin E synthase 1 (PTGES1)
mPGES-2 GeneProductENSG00000148334 (Ensembl) =microsomal prostaglandin E synthase 2 (PTGES2)
p21ProteinA0A024RCX5 (Uniprot-TrEMBL)
p38 MAPKGeneProductENSG00000185386 (Ensembl)
p53GeneProduct
p53MetaboliteCHEBI:77731 (ChEBI)
p53S37Metabolite
w-hydroxylase*
y-linolenic acid (GLA) (18:3,w6)Metabolite28661 (ChEBI) GLA(18:3 w6)
Δ12-PGD2Metabolite
Δ12-PGJ2MetaboliteCHEBI:28130 (ChEBI) Synonym: 9-Deoxy-delta(9,12)-13,14-dihydro PGD2
Δ13-reductaseGeneProductEC 1.3.1.48 (Enzyme Nomenclature) =15-oxoprostaglandin-Δ13-reductase
Δ6-trans-12-epi-leukotriene B4MetaboliteCHEBI:63982 (ChEBI)
Δ9-Elongase*
β and ω oxidation*
β-oxidase*GeneProduct
β-oxidationComplex
β-oxidation*

Annotated Interactions

No annotated interactions

Personal tools