Omega-6-fatty acids in senescence (Homo sapiens)
From WikiPathways
Description
Oxylipins, notably prostaglandins, are synthetized by senescent cells and then accumulate, promoting the senescent-associated secretory phenotype (Wiley et al., 2021). The prostaglandins are classified into three main groups, depending on the starting point of their biosynthesis. The serie-1-prostaglandins are derived from its precursor dihomo-γ-linolenic acid (DGLA). The serie-2-prostaglandins and serie-3-prostaglandins are derived from arachidonic acid (AA) and eicosapentae-noic acid (EPA), respectively (Noverr et al., 2003)
Quality Tags
Ontology Terms
Bibliography
View all... |
- C P Quilley, J C McGiff, W H Lee, F F Sun, P Y Wong; ''6-Keto PGExi A Possible Metabolite of ProstacyclinHaving Platelet Antiaggregatory Effects''; , 1980 PubMed Europe PMC Scholia
- B. Rosenkranz, C. Fischer, K.E. Weimer, J.C. Frolich; ''Metabolism of prostacyclin and 6-keto-prostaglandin F1 alpha in man.''; Journal of Biological Chemistry, 1980
- Milne GL, Yin H, Hardy KD, Davies SS, Roberts LJ 2nd; ''Isoprostane generation and function.''; Chem Rev, 2011 PubMed Europe PMC Scholia
- Chi J, Cheng J, Wang S, Li C, Chen M; ''Promising Anti-Inflammatory Tools: Biomedical Efficacy of Lipoxins and Their Synthetic Pathways.''; Int J Mol Sci, 2023 PubMed Europe PMC Scholia
- ''Protectins, Resolvins and Maresins - Specialized Pro-Resolving Mediators''; ,
- Biringer RG; ''The enzymology of human eicosanoid pathways: the lipoxygenase branches.''; Mol Biol Rep, 2020 PubMed Europe PMC Scholia
- Wiley CD, Brumwell AN, Davis SS, Jackson JR, Valdovinos A, Calhoun C, Alimirah F, Castellanos CA, Ruan R, Wei Y, Chapman HA, Ramanathan A, Campisi J, Jourdan Le Saux C; ''Secretion of leukotrienes by senescent lung fibroblasts promotes pulmonary fibrosis.''; JCI Insight, 2019 PubMed Europe PMC Scholia
- Green AR, Freedman C, Tena J, Tourdot BE, Liu B, Holinstat M, Holman TR; ''5 S,15 S-Dihydroperoxyeicosatetraenoic Acid (5,15-diHpETE) as a Lipoxin Intermediate: Reactivity and Kinetics with Human Leukocyte 5-Lipoxygenase, Platelet 12-Lipoxygenase, and Reticulocyte 15-Lipoxygenase-1.''; Biochemistry, 2018 PubMed Europe PMC Scholia
- Annaleise V Sampey, Seetha Monrad, Leslie J Crofford; ''Microsomal prostaglandin E synthase-1: the inducible synthase for prostaglandin E2''; Arthritis Research & Therapy, 2005 PubMed Europe PMC Scholia
- Orhan Lepara, Asija Zaciragic, Almir Fajkic, Alma Dzubur Kulenovic, Amela Dervisevic, Amina Valjevac, Emina Kiseljakovic, Saida Ibragic; ''Peripheral 8-iso-PGF2a as a Biomarker in Bosnian Patients with Alzheimer's Disease and Vascular Dementia.''; National Library of Medicine, 2020 PubMed Europe PMC Scholia
- Polet H, Levine L; ''Metabolism of prostaglandins E, A, and C in serum.''; J Biol Chem, 1975 PubMed Europe PMC Scholia
- Park JY, Pillinger MH, Abramson SB; ''Prostaglandin E2 synthesis and secretion: the role of PGE2 synthases.''; Clin Immunol, 2006 PubMed Europe PMC Scholia
- Lin Y, Xu Z; ''Fibroblast Senescence in Idiopathic Pulmonary Fibrosis.''; Front Cell Dev Biol, 2020 PubMed Europe PMC Scholia
- Bylund J, Hidestrand M, Ingelman-Sundberg M, Oliw EH; ''Identification of CYP4F8 in human seminal vesicles as a prominent 19-hydroxylase of prostaglandin endoperoxides.''; J Biol Chem, 2000 PubMed Europe PMC Scholia
- Zhang M, Li W, Li T; ''Generation and detection of levuglandins and isolevuglandins in vitro and in vivo.''; Molecules, 2011 PubMed Europe PMC Scholia
- Yin H, Musiek ES, Gao L, Porter NA, Morrow JD; ''Regiochemistry of neuroprostanes generated from the peroxidation of docosahexaenoic acid in vitro and in vivo.''; J Biol Chem, 2005 PubMed Europe PMC Scholia
- Farker K, Schweer H, Vollandt R, Nassr N, Nagel U, Seyberth HW, Hoffmann A, Oettel M; ''Measurements of urinary prostaglandins in young ovulatory women during the menstrual cycle and in postmenopausal women.''; Prostaglandins, 1997 PubMed Europe PMC Scholia
- Oh SF, Pillai PS, Recchiuti A, Yang R, Serhan CN; ''Pro-resolving actions and stereoselective biosynthesis of 18S E-series resolvins in human leukocytes and murine inflammation.''; J Clin Invest, 2011 PubMed Europe PMC Scholia
- Smith W; ''Eicosanoid nomenclature.''; Prostaglandins, 1989 PubMed Europe PMC Scholia
- Sinzinger H, Neumann I, O'Grady J, Rogatti W, Peskar BA; ''Effects of prostaglandin E1 metabolites on the induction of arterial thromboresistance.''; Prostaglandins Other Lipid Mediat, 1998 PubMed Europe PMC Scholia
- Ferreira I, Falcato F, Bandarra N, Rauter AP; ''Resolvins, Protectins, and Maresins: DHA-Derived Specialized Pro-Resolving Mediators, Biosynthetic Pathways, Synthetic Approaches, and Their Role in Inflammation.''; Molecules, 2022 PubMed Europe PMC Scholia
- E L Hahn, R L Gamelli; ''Prostaglandin E2 Synthesis and Metabolism in Burn Injury and Trauma''; , 2000 PubMed Europe PMC Scholia
- Anne-Mari Mustonen, Petteri Nieminen; ''Dihomo-γ-Linolenic Acid (20:3n-6)—Metabolism, Derivatives, and Potential Significance in Chronic Inflammation''; Pubmed, 2023 PubMed Europe PMC Scholia
- Straus DS, Glass CK; ''Cyclopentenone prostaglandins: new insights on biological activities and cellular targets.''; Med Res Rev, 2001 PubMed Europe PMC Scholia
- Milne GL, Yin H, Morrow JD; ''Human biochemistry of the isoprostane pathway.''; J Biol Chem, 2008 PubMed Europe PMC Scholia
- Serhan CN, Petasis NA; ''Resolvins and protectins in inflammation resolution.''; Chem Rev, 2011 PubMed Europe PMC Scholia
- P K Moore, R J Griffiths; ''Review: 6 keto-prostaglandin-E1''; National Library of Medicine, 1983 PubMed Europe PMC Scholia
- Suryadevara V, Ramchandran R, Kamp DW, Natarajan V; ''Lipid Mediators Regulate Pulmonary Fibrosis: Potential Mechanisms and Signaling Pathways.''; Int J Mol Sci, 2020 PubMed Europe PMC Scholia
- A Leonhardt, M Krauss, U Gieler, H Schweer, R Happle, H W Seyberth; ''In vivo formation of prostaglandin E1 and prostaglandin E2 in atopic dermatitis.''; British Journal of Dermatology, 1997 PubMed Europe PMC Scholia
- Hammarström S, Orning L, Bernström K; ''Metabolism of leukotrienes.''; Mol Cell Biochem, 1985 PubMed Europe PMC Scholia
- Rodriguez AR, Spur BW; ''First total syntheses of the pro-resolving lipid mediators 7(S),13(R),20(S)-Resolvin T1 and 7(S),13(R)-Resolvin T4.''; Tetrahedron Lett, 2020 PubMed Europe PMC Scholia
- Saini RK, Keum YS; ''Omega-3 and omega-6 polyunsaturated fatty acids: Dietary sources, metabolism, and significance - A review.''; Life Sci, 2018 PubMed Europe PMC Scholia
- Kohli P, Levy BD; ''Resolvins and protectins: mediating solutions to inflammation.''; Br J Pharmacol, 2009 PubMed Europe PMC Scholia
- Hansen TV, Dalli J, Serhan CN; ''The novel lipid mediator PD1(n-3 DPA): An overview of the structural elucidation, synthesis, biosynthesis and bioactions.''; Prostaglandins Other Lipid Mediat, 2017 PubMed Europe PMC Scholia
- Yi XY, Gauthier KM, Cui L, Nithipatikom K, Falck JR, Campbell WB; ''Metabolism of adrenic acid to vasodilatory 1alpha,1beta-dihomo-epoxyeicosatrienoic acids by bovine coronary arteries.''; Am J Physiol Heart Circ Physiol, 2007 PubMed Europe PMC Scholia
- Watanabe K; ''Prostaglandin F synthase.''; Prostaglandins Other Lipid Mediat, 2002 PubMed Europe PMC Scholia
- Wong PY, Lee WH, Chao PH, Reiss RF, McGiff JC; ''Metabolism of prostacyclin by 9-hydroxyprostaglandin dehydrogenase in human platelets. Formation of a potent inhibitor of platelet aggregation and enzyme purification.''; J Biol Chem, 1980 PubMed Europe PMC Scholia
- Anthony W. Norman, Helen L. Henry; ''Chapter 8 - Eicosanoids''; Hormones (Third Edition), 2015
- Catalano A, Rodilossi S, Caprari P, Coppola V, Procopio A; ''5-Lipoxygenase regulates senescence-like growth arrest by promoting ROS-dependent p53 activation.''; EMBO J, 2005 PubMed Europe PMC Scholia
- A NORMAN; ''Eicosanoids''; Hormones:171-188, 2015
- Helliwell RJ, Adams LF, Mitchell MD; ''Prostaglandin synthases: recent developments and a novel hypothesis.''; Prostaglandins Leukot Essent Fatty Acids, 2004 PubMed Europe PMC Scholia
- F Liu, J A Orr, J Y Wu; ''''; , PubMed Europe PMC Scholia
- Ramesh Kumar Saini, Young-Soo Keum; ''Omega-3 and omega-6 polyunsaturated fatty acids: Dietary sources, metabolism, and significance - A review''; Life Sciences, 2018
- Wang W, Ballatori N; ''Endogenous glutathione conjugates: occurrence and biological functions.''; Pharmacol Rev, 1998 PubMed Europe PMC Scholia
- Peskar BA, Cawello W, Rogatti W, Rudofsky G; ''On the metabolism of prostaglandin E1 administered intravenously to human volunteers.''; J Physiol Pharmacol, 1991 PubMed Europe PMC Scholia
- P. J. Piper; ''''; , PubMed Europe PMC Scholia
- Dalli J, Colas RA, Serhan CN; ''Novel n-3 immunoresolvents: structures and actions.''; Sci Rep, 2013 PubMed Europe PMC Scholia
- Carstensen S, Gress C, Erpenbeck VJ, Kazani SD, Hohlfeld JM, Sandham DA, Müller M; ''Prostaglandin D(2) metabolites activate asthmatic patient-derived type 2 innate lymphoid cells and eosinophils via theDP(2) receptor.''; Respir Res, 2021 PubMed Europe PMC Scholia
- Chiang N, Serhan CN; ''Specialized pro-resolving mediator network: an update on production and actions.''; Essays Biochem, 2020 PubMed Europe PMC Scholia
- M Negishi, T Koizumi, A Ichikawa; ''Biological actions of delta 12-prostaglandin J2''; National Library of Medicine, 1995 PubMed Europe PMC Scholia
- Li J, Guo C, Wu J; ''15-Deoxy-delta-12,14-Prostaglandin J2 (15d-PGJ2), an Endogenous Ligand of PPAR-y: Function and Mechanism''; National Library of Medicine, 2019 PubMed Europe PMC Scholia
- Basu S; ''Metabolism of 8-iso-prostaglandin F2alpha.''; FEBS Lett, 1998 PubMed Europe PMC Scholia
- Galano JM, Lee YY, Oger C, Vigor C, Vercauteren J, Durand T, Giera M, Lee JC; ''Isoprostanes, neuroprostanes and phytoprostanes: An overview of 25years of researchin chemistry and biology.''; Prog Lipid Res, 2017 PubMed Europe PMC Scholia
- Galano JM, Lee YY, Oger C, Vigor C, Vercauteren J, Durand T, Giera M, Lee JC; ''Isoprostanes, neuroprostanes and phytoprostanes: An overview of 25years of research in chemistry and biology.''; Prog Lipid Res, 2017 PubMed Europe PMC Scholia
- S Basu; ''''; , PubMed Europe PMC Scholia
- Ohki S, Ogino N, Yamamoto S, Hayaishi O; ''Prostaglandin hydroperoxidase, an integral part of prostaglandin endoperoxide synthetase from bovine vesicular gland microsomes.''; J Biol Chem, 1979 PubMed Europe PMC Scholia
- Steffen Braune, Jan-Heiner Küpper, Friedrich Jung; ''Effect of Prostanoids on Human Platelet Function: An Overview''; , 2020 PubMed Europe PMC Scholia
- Erik Anggard, Ernst Oliw; ''Formation and metabolism of prostaglandins in the kidney.''; Kidney International, 1981
- ''PLA2G4A''; Wikipedia,
- Chiang N, Serhan CN; ''Specialized pro-resolving mediator network: an update on production and actions.''; Essays Biochem, 2020 PubMed Europe PMC Scholia
- Nourooz-Zadeh J, Halliwell B, Anggård EE; ''Evidence for the formation of F3-isoprostanes during peroxidation of eicosapentaenoic acid.''; Biochem Biophys Res Commun, 1997 PubMed Europe PMC Scholia
- Wiley CD, Sharma R, Davis SS, Lopez-Dominguez JA, Mitchell KP, Wiley S, Alimirah F, Kim DE, Payne T, Rosko A, Aimontche E, Deshpande SM, Neri F, Kuehnemann C, Demaria M, Ramanathan A, Campisi J; ''Oxylipin biosynthesis reinforces cellular senescence and allows detection of senolysis.''; Cell Metab, 2021 PubMed Europe PMC Scholia
- Primdahl KG, Aursnes M, Walker ME, Colas RA, Serhan CN, Dalli J, Hansen TV, Vik A; ''Synthesis of 13(R)-Hydroxy-7Z,10Z,13R,14E,16Z,19Z Docosapentaenoic Acid (13R-HDPA) and Its Biosynthetic Conversion to the 13-Series Resolvins.''; J Nat Prod, 2016 PubMed Europe PMC Scholia
- Jocelyn Reader, Dawn Holt, Amy Fulton; ''Prostaglandin E2 EP Receptors as Therapeutic Targets in Breast Cancer''; , 2011 PubMed Europe PMC Scholia
- Marhuenda J, Medina S, Martínez-Hernández P, Arina S, Zafrilla P, Mulero J, Oger C, Galano JM, Durand T, Solana A, Ferreres F, López-García JJ, Gil-Izquierdo A; ''Effect of the dietary intake of melatonin- and hydroxytyrosol-rich wines by healthy female volunteers on the systemic lipidomic-related oxylipins.''; Food Funct, 2017 PubMed Europe PMC Scholia
- Engeland K; ''Cell cycle regulation: p53-p21-RB signaling.''; Cell Death Differ, 2022 PubMed Europe PMC Scholia
- Sheng-Chung Lee, Lawrence Levine; ''Prostaglandin Metabolism: Cytoplasmic reduced nicotinamide adenine dinucleotide phosphate-dependent and microsomal reduced nicotinamide adenine dinucleotide-dependent prostaglandin E 9-ketoreductase activities in monkey and pigeon tissues.''; The Journal of Biological Chemistry, 1974
- Yang M, Song XQ, Han M, Liu H; ''The role of Resolvin D1 in liver diseases.''; Prostaglandins Other Lipid Mediat, 2022 PubMed Europe PMC Scholia
- Nishizawa M, Nakajima T, Yasuda K, Kanzaki H, Sasaguri Y, Watanabe K, Ito S; ''Close kinship of human 20alpha-hydroxysteroid dehydrogenase gene with three aldo-keto reductase genes.''; Genes Cells, 2000 PubMed Europe PMC Scholia
- M Negishi, T Koizumi, A Ichikawa; ''Biological actions of delta 12-prostaglandin J2''; Journal of Lipid Mediators and Cell Signalling, 1995 PubMed Europe PMC Scholia
- Mucha, Riutta A; ''Determination of 9alpha, 11beta prostaglandin F2 in human urine. combination of solid-phase extraction and radioimmunoassay.''; Prostaglandins Leukot Essent Fatty Acids, 2001 PubMed Europe PMC Scholia
- Brenna JT, Kothapalli KSD; ''New understandings of the pathway of long-chain polyunsaturated fatty acid biosynthesis.''; Curr Opin Clin Nutr Metab Care, 2022 PubMed Europe PMC Scholia
- Ni KD, Liu JY; ''The Functions of Cytochrome P450 ω-hydroxylases and the Associated Eicosanoids in Inflammation-Related Diseases.''; Front Pharmacol, 2021 PubMed Europe PMC Scholia
- Wallis JG, Watts JL, Browse J; ''Polyunsaturated fatty acid synthesis: what will they think of next?''; Trends Biochem Sci, 2002 PubMed Europe PMC Scholia
- G J Dusting, S Moncada, J R Vane; ''Recirculation of prostacyclin (PGI2) in the dog.''; British Journal of Pharmacology, 1978 PubMed Europe PMC Scholia
- Elisabeth L. Hahn, Li-Ke He, Richard L. Gamelli; ''Prostaglandin E2 Synthesis and Metabolism in Burn Injury and Trauma.''; The Journal of Trauma and Acute Care Surgery, 2000
- Habib GM, Shi ZZ, Cuevas AA, Lieberman MW; ''Identification of two additional members of the membrane-bound dipeptidase family.''; FASEB J, 2003 PubMed Europe PMC Scholia
- Luo Y, Jin M, Lou L, Yang S, Li C, Li X, Zhou M, Cai C; ''Role of arachidonic acid lipoxygenase pathway in Asthma.''; Prostaglandins Other Lipid Mediat, 2022 PubMed Europe PMC Scholia
- Ahmed OS, Galano JM, Pavlickova T, Revol-Cavalier J, Vigor C, Lee JC, Oger C, Durand T; ''Moving forward with isoprostanes, neuroprostanes and phytoprostanes: where are we now?''; Essays Biochem, 2020 PubMed Europe PMC Scholia
- Milne GL, Yin H, Hardy KD, Davies SS, Roberts LJ 2nd; ''Isoprostane generation and function.''; Chem Rev, 2011 PubMed Europe PMC Scholia
- Melo CFOR, Bachur LF, Delafiori J, Dabaja MZ, de Oliveira DN, Guerreiro TM, Tararam CA, Busso-Lopes AF, Moretti ML, Catharino RR; ''Does leukotriene F4 play a major role in the infection mechanism of Candida sp.?''; Microb Pathog, 2020 PubMed Europe PMC Scholia
- Hatem Tallima, Rashika El Ridi; ''''; , PubMed Europe PMC Scholia
- Feltenmark S, Gautam N, Brunnström A, Griffiths W, Backman L, Edenius C, Lindbom L, Björkholm M, Claesson HE; ''Eoxins are proinflammatory arachidonic acid metabolites produced via the 15-lipoxygenase-1 pathway in human eosinophils and mast cells.''; Proc Natl Acad Sci U S A, 2008 PubMed Europe PMC Scholia
- Wei J, Chen S, Guo W, Feng B, Yang S, Huang C, Chu J; ''Leukotriene D4 induces cellular senescence in osteoblasts.''; Int Immunopharmacol, 2018 PubMed Europe PMC Scholia
- Westlund P, Granström E, Kumlin M, Nordenström A; ''Identification of 11-dehydro-TXB2 as a suitable parameter for monitoring thromboxane production in the human.''; Prostaglandins, 1986 PubMed Europe PMC Scholia
- Stark K, Bylund J, Törmä H, Sahlén G, Oliw EH; ''On the mechanism of biosynthesis of 19-hydroxyprostaglandins of human seminal fluid and expression of cyclooxygenase-2, PGH 19-hydroxylase (CYP4F8) and microsomal PGE synthase-1 in seminal vesicles and vas deferens.''; Prostaglandins Other Lipid Mediat, 2005 PubMed Europe PMC Scholia
- M K Patel, C E Evans, F A McEvoy; ''''; , PubMed Europe PMC Scholia
- A. Hari Kishore, David Owen, R. Ann Word; ''''; , PubMed Europe PMC Scholia
- Serhan CN, Libreros S, Nshimiyimana R; ''E-series resolvin metabolome, biosynthesis and critical role of stereochemistry of specialized pro-resolving mediators (SPMs) in inflammation-resolution: Preparing SPMs for long COVID-19, human clinical trials, and targeted precision nutrition.''; Semin Immunol, 2022 PubMed Europe PMC Scholia
- Gazi L, Gyles S, Rose J, Lees S, Allan C, Xue L, Jassal R, Speight G, Gamble V, Pettipher R; ''Delta12-prostaglandin D2 is a potent and selective CRTH2 receptor agonist and causes activation of human eosinophils and Th2 lymphocytes.''; Prostaglandins Other Lipid Mediat, 2005 PubMed Europe PMC Scholia
- Anyona SB, Kempaiah P, Davenport GC, Vulule JM, Hittner JB, Ong'echa JM, Perkins DJ; ''Suppressed circulating bicyclo-PGE2 levels and leukocyte COX-2 transcripts in children co-infected with P. falciparum malaria and HIV-1 or bacteremia.''; Biochem Biophys Res Commun, 2013 PubMed Europe PMC Scholia
- P J Lewis, C T Dollery; ''''; , PubMed Europe PMC Scholia
- Samar Basu; ''Novel cyclooxygenase-catalyzed bioactive prostaglandin F2a from physiology to new principles in inflammation.''; Medicinal Research Reviews, 2006
- Hedi H, Norbert G; ''5-Lipoxygenase Pathway, Dendritic Cells, and Adaptive Immunity.''; J Biomed Biotechnol, 2004 PubMed Europe PMC Scholia
- Song WL, Wang M, Ricciotti E, Fries S, Yu Y, Grosser T, Reilly M, Lawson JA, FitzGerald GA; ''Tetranor PGDM, an Abundant Urinary Metabolite Reflects Biosynthesis of Prostaglandin D2 in Mice and Humans''; Journal of Biological Chemistry, 2008
- Gabbs M, Leng S, Devassy JG, Monirujjaman M, Aukema HM; ''Advances in Our Understanding of Oxylipins Derived from Dietary PUFAs.''; Adv Nutr, 2015 PubMed Europe PMC Scholia
- R T Okita, J R Okita; ''''; , PubMed Europe PMC Scholia
- Brunnström Å, Tryselius Y, Feltenmark S, Andersson E, Leksell H, James A, Mannervik B, Dahlén B, Claesson HE; ''On the biosynthesis of 15-HETE and eoxin C4 by human airway epithelial cells.''; Prostaglandins Other Lipid Mediat, 2015 PubMed Europe PMC Scholia
- Serhan CN, Dalli J, Colas RA, Winkler JW, Chiang N; ''Protectins and maresins: New pro-resolving families of mediators in acute inflammation and resolution bioactive metabolome.''; Biochim Biophys Acta, 2015 PubMed Europe PMC Scholia
- Durand T, Bultel-Poncé V, Guy A, El Fangour S, Rossi JC, Galano JM; ''Isoprostanes and phytoprostanes: Bioactive lipids.''; Biochimie, 2011 PubMed Europe PMC Scholia
- Carlo Patrono, Bianca Rocca; ''Measurement of Thromboxane Biosynthesis in Health and Disease''; Front Pharmacol., 2019 PubMed Europe PMC Scholia
- Ferreira I, Falcato F, Bandarra N, Rauter AP; ''Resolvins, Protectins, and Maresins: DHA-Derived Specialized Pro-Resolving Mediators, Biosynthetic Pathways, Synthetic Approaches, and Their Role in Inflammation.''; Molecules, 2022 PubMed Europe PMC Scholia
- Lu Yao, Weina Chen, Kyoungsub Song, Chang Han, Chandrashekhar R. Gandhi, Kyu Lim, Tong Wu; ''''; , PubMed Europe PMC Scholia
- Libreros S, Shay AE, Nshimiyimana R, Fichtner D, Martin MJ, Wourms N, Serhan CN; ''A New E-Series Resolvin: RvE4 Stereochemistry and Function in Efferocytosis of Inflammation-Resolution.''; Front Immunol, 2020 PubMed Europe PMC Scholia
- Hajeyah AA, Griffiths WJ, Wang Y, Finch AJ, O'Donnell VB; ''The Biosynthesis of Enzymatically Oxidized Lipids.''; Front Endocrinol (Lausanne), 2020 PubMed Europe PMC Scholia
- Murphy RC, Gijón MA; ''Biosynthesis and metabolism of leukotrienes.''; Biochem J, 2007 PubMed Europe PMC Scholia
- Shibata T; ''15-Deoxy-Δ¹²,¹⁴-prostaglandin J₂ as an electrophilic mediator.''; Biosci Biotechnol Biochem, 2015 PubMed Europe PMC Scholia
- Ying Zhang, Yi Du, Jian-Feng He, Kai-Jun Li; ''''; , PubMed Europe PMC Scholia
- Eilidh M Wood, Kylie K Hornaday, Donna M Slater; ''''; , PubMed Europe PMC Scholia
- B Rosenkranz, C Fischer, K E Weimer, J C Frölich; ''Metabolism of prostacyclin and 6-keto-prostaglandin F1 alpha in man''; , 1980 PubMed Europe PMC Scholia
- Reddanna P, Prabhu KS, Whelan J, Reddy CC; ''Carboxypeptidase A-catalyzed direct conversion of leukotriene C4 to leukotriene F4.''; Arch Biochem Biophys, 2003 PubMed Europe PMC Scholia
- Lagarde M, Bernoud-Hubac N, Calzada C, Véricel E, Guichardant M; ''Lipidomics of essential fatty acids and oxygenated metabolites.''; Mol Nutr Food Res, 2013 PubMed Europe PMC Scholia
- F A Fitzpatrick, R Aguirre, J E Pike, F H Lincoln; ''''; , PubMed Europe PMC Scholia
- Tang S, Wan M, Huang W, Stanton RC, Xu Y; ''Maresins: Specialized Proresolving Lipid Mediators and Their Potential Role in Inflammatory-Related Diseases.''; Mediators Inflamm, 2018 PubMed Europe PMC Scholia
- Salomon RG; ''Distinguishing levuglandins produced through the cyclooxygenase and isoprostane pathways.''; Chem Phys Lipids, 2005 PubMed Europe PMC Scholia
- Mainka M, George S, Angioni C, Ebert R, Goebel T, Kampschulte N, Krommes A, Weigert A, Thomas D, Schebb NH, Steinhilber D, Kahnt AS; ''On the biosynthesis of specialized pro-resolvingmediators in human neutrophils and the influence of cell integrity.''; Biochim Biophys Acta Mol Cell Biol Lipids, 2022 PubMed Europe PMC Scholia
- Kim KM, Jung BH, Paeng KJ, Kim I, Chung BC; ''Increased urinary F(2)-isoprostanes levels in the patients with Alzheimer's disease.''; Brain Res Bull, 2004 PubMed Europe PMC Scholia
- Koletzko B, Reischl E, Tanjung C, Gonzalez-Casanova I, Ramakrishnan U, Meldrum S, Simmer K, Heinrich J, Demmelmair H; ''FADS1 and FADS2 Polymorphisms Modulate Fatty Acid Metabolism and Dietary Impact on Health.''; Annu Rev Nutr, 2019 PubMed Europe PMC Scholia
- Freund A, Patil CK, Campisi J; ''p38MAPK is a novel DNA damage response-independent regulator of the senescence-associated secretory phenotype.''; EMBO J, 2011 PubMed Europe PMC Scholia
- Gol S, Pena RN, Rothschild MF, Tor M, Estany J; ''A polymorphism in the fatty acid desaturase-2 gene is associated with the arachidonic acid metabolism in pigs.''; Sci Rep, 2018 PubMed Europe PMC Scholia
- Peskar BA, Cawello W, Rogatti W, Rudofsky G; ''On the metabolism of prostaglandin E1 administered intravenously to human volunteers.''; J Physiol Pharmacol, 1991 PubMed Europe PMC Scholia
- D F Woodward, C E Protzman, A H Krauss, L S Williams; ''''; , PubMed Europe PMC Scholia
- Allison E. Norlander, R. Stokes Peebles; ''''; , PubMed Europe PMC Scholia
- Roberts LJ 2nd, Fessel JP, Davies SS; ''The biochemistry of the isoprostane, neuroprostane, and isofuran Pathways of lipid peroxidation.''; Brain Pathol, 2005 PubMed Europe PMC Scholia
- Wen-Ling Chou, Lee-Ming Chuang, Chi-Chi Chou, Andrew H.-J. Wang, John A. Lawson, Garret A. FitzGerald, Zee-Fen Chang; ''Identification of a Novel Prostaglandin Reductase Reveals the Involvement of Prostaglandin E2 Catabolism in Regulation of Peroxisome Proliferator-activated Receptor γ Activation.''; Journal of Biological Chemistry, 2007
- Nanae Nagata, Yukiko Kusakari, Yoshifumi Fukunishi, Tsuyoshi Inoue, Yoshihiro Urade; ''Catalytic mechanism of the primary human prostaglandin F2a synthase,aldo-keto reductase 1B1--prostaglandin D2 synthase activity in the absence of NADP(H)''; PubMed, 2011 PubMed Europe PMC Scholia
- Wen-Liang Song, Miao Wang, Emanuela Ricciotti, Susanne Fries: Ying Yu, Tilo Grosser, Muredach Reilly, John A Lawson, Garret A FitzGerald; ''Tetranor PGDM, an abundant urinary metabolite reflects biosynthesis of prostaglandin D2 in mice and humans''; , 2008 PubMed Europe PMC Scholia
- Sprecher H, VanRollins M, Sun F, Wyche A, Needleman P; ''Dihomo-prostaglandins and -thromboxane. A prostaglandin family from adrenic acid that may be preferentially synthesized in the kidney.''; J Biol Chem, 1982 PubMed Europe PMC Scholia
- Katayama S, Maruno Y, Itabashi A, Inaba M, Akabane S, Tanaka K, Shibuya M, Kawazu S, Ishii J; ''Effect of dietary calcium on renal prostaglandins.''; Prostaglandins Leukot Essent Fatty Acids, 1991 PubMed Europe PMC Scholia
- Lee BR, Paing MH, Sharma-Walia N; ''Cyclopentenone Prostaglandins: Biologically Active Lipid Mediators Targeting Inflammation.''; Front Physiol, 2021 PubMed Europe PMC Scholia
- Chung-Ying K Chen, Elizabeth M Poole, Cornelia M Ulrich, Richard J Kulmacz, Lee-Ho Wang; ''''; , PubMed Europe PMC Scholia
- T Suzuki-Yamamoto, M Nishizawa, M Fukui, E Okuda-Ashitaka, T Nakajima, S Ito, K Watanabe; ''cDNA cloning, expression and characterization of human prostaglandin F synthase''; National Library of Medicine, 1999 PubMed Europe PMC Scholia
- Reich EE, Markesbery WR, Roberts LJ 2nd, Swift LL, Morrow JD, Montine TJ; ''Brain regional quantification of F-ring and D-/E-ring isoprostanes and neuroprostanes in Alzheimer's disease.''; Am J Pathol, 2001 PubMed Europe PMC Scholia
- Kahnt AS, Schebb NH, Steinhilber D; ''Formation of lipoxins and resolvins in human leukocytes.''; Prostaglandins Other Lipid Mediat, 2023 PubMed Europe PMC Scholia
- Zhuang XY, Zhang YH, Xiao AF, Zhang AH, Fang BS; ''Key Enzymes in Fatty Acid Synthesis Pathway for Bioactive Lipids Biosynthesis.''; Front Nutr, 2022 PubMed Europe PMC Scholia
- T E Liston, L J Roberts; ''Transformation of prostaglandin D2 to 9 alpha,11 beta-(15S)-trihydroxyprosta-(5Z,13E)-dien-1-oic acid (9 alpha,11 beta-prostaglandin F2): a unique biologically active prostaglandin produced enzymatically in vivo in humans.''; National Library of Medicine, 1985 PubMed Europe PMC Scholia
- Klarissa D. Hardy, Brian E. Cox, Ginger L. Milne, Huiyong Yin, L. Jackson Roberts; ''Nonenzymatic free radical-catalyzed generation of 15-deoxy-delta-12,14-prostaglandin J2-like compounds (deoxy-J2-isoprostanes) in vivo''; National Library of Medicine, 2011 PubMed Europe PMC Scholia
- Harkewicz R, Fahy E, Andreyev A, Dennis EA; ''Arachidonate-derived dihomoprostaglandin production observed in endotoxin-stimulated macrophage-like cells.''; J Biol Chem, 2007 PubMed Europe PMC Scholia
- Djuricic I, Calder PC; ''Beneficial Outcomes of Omega-6 and Omega-3 Polyunsaturated Fatty Acids on Human Health: An Update for 2021.''; Nutrients, 2021 PubMed Europe PMC Scholia
- Milne GL, Dai Q, Roberts LJ 2nd; ''The isoprostanes--25 years later.''; Biochim Biophys Acta, 2015 PubMed Europe PMC Scholia
- Bengt Samuelsson, Ralf Morgenstern, Per-Johan Jakobsson; ''Membrane prostaglandin E synthase -1: a novel therapeutic target''; PubMed, 2007 PubMed Europe PMC Scholia
- Yin H, Morrow JD, Porter NA; ''Identification of a novel class of endoperoxides from arachidonate autoxidation.''; J Biol Chem, 2004 PubMed Europe PMC Scholia
- Helena Idborg, Sven-Christian Pawelzik; ''Prostanoid Metabolites as Biomarkers in Human Disease''; , 2022 PubMed Europe PMC Scholia
- Gao L, Yin H, Milne GL, Porter NA, Morrow JD; ''Formation of F-ring isoprostane-like compounds (F3-isoprostanes) in vivo from eicosapentaenoic acid.''; J Biol Chem, 2006 PubMed Europe PMC Scholia
- Anggård E, Oliw E; ''Formation and metabolism of prostaglandins in the kidney.''; Kidney Int, 1981 PubMed Europe PMC Scholia
- Maria E. Figueiredo-Pereira, Chuhyon Corwin, John Babich2; ''Prostaglandin J2: a potential target for halting inflammation-induced neurodegeneration''; , 2016 PubMed Europe PMC Scholia
- P Y Cheung, J R Challis; ''Prostaglandin E2 metabolism in the human fetal membranes.''; American Journal of Obstetrics & Gynecology, 1989 PubMed Europe PMC Scholia
- Steffen Braune, Jan-Heiner Küpper, Friedrich Jung; ''Effect of Prostanoids on Human Platelet Function: An Overview''; , 2020 PubMed Europe PMC Scholia
- F A Fitzpatrick, M A Wynalda; ''Albumin-catalyzed metabolism of prostaglandin D2. Identification of products formed in vitro''; PubMed, 1983 PubMed Europe PMC Scholia
- A NORMAN; ''Eicosanoids''; Hormones :171-188, 2015
- Zdanov S, Bernard D, Debacq-Chainiaux F, Martien S, Gosselin K, Vercamer C, Chelli F, Toussaint O, Abbadie C; ''Normal or stress-induced fibroblast senescence involves COX-2 activity.''; Exp Cell Res, 2007 PubMed Europe PMC Scholia
- Salomon RG, Subbanagounder G, O'Neil J, Kaur K, Smith MA, Hoff HF, Perry G, Monnier VM; ''Levuglandin E2-protein adducts in human plasma and vasculature.''; Chem Res Toxicol, 1997 PubMed Europe PMC Scholia
- Dyall SC, Balas L, Bazan NG, Brenna JT, Chiang N, da Costa Souza F, Dalli J, Durand T, Galano JM, Lein PJ, Serhan CN, Taha AY; ''Polyunsaturated fatty acids and fatty acid-derived lipid mediators: Recent advances in the understanding of their biosynthesis, structures, and functions.''; Prog Lipid Res, 2022 PubMed Europe PMC Scholia
- Miyamoto T, Ogino N, Yamamoto S, Hayaishi O; ''Purification of prostaglandin endoperoxide synthetase from bovine vesicular gland microsomes.''; J Biol Chem, 1976 PubMed Europe PMC Scholia
- Martien S, Pluquet O, Vercamer C, Malaquin N, Martin N, Gosselin K, Pourtier A, Abbadie C; ''Cellular senescence involves an intracrine prostaglandin E2 pathway in human fibroblasts.''; Biochim Biophys Acta, 2013 PubMed Europe PMC Scholia
- Gonçalves S, Yin K, Ito Y, Chan A, Olan I, Gough S, Cassidy L, Serrao E, Smith S, Young A, Narita M, Hoare M; ''COX2 regulates senescence secretome composition and senescence surveillance through PGE(2).''; Cell Rep, 2021 PubMed Europe PMC Scholia
- Li QF, Hao H, Tu WS, Guo N, Zhou XY; ''Maresins: anti-inflammatory pro-resolving mediators with therapeutic potential.''; Eur Rev Med Pharmacol Sci, 2020 PubMed Europe PMC Scholia
- Petrie JR, Shrestha P, Liu Q, Mansour MP, Wood CC, Zhou XR, Nichols PD, Green AG, Singh SP; ''Rapid expression of transgenes driven by seed-specific constructs in leaf tissue: DHA production.''; Plant Methods, 2010 PubMed Europe PMC Scholia
- Peiqing Sun, Naoto Yoshizuka, Liguo New, Bettina A. Moser, Yilei Li, Rong Liao, Changchuan Xie, Jianming Chen, Qingdong Deng, Maria Yamout, Meng-Qiu Dong, Costas G. Frangou, John R. Yates III, Peter E. Wright, Jiahuai Han; ''PRAK Is Essential for ras-Induced Senescence and Tumor Suppression''; ScienceDirect, 2007 PubMed Europe PMC Scholia
- Biringer RG; ''A review of non-prostanoid, eicosanoid receptors: expression, characterization, regulation, and mechanism of action.''; J Cell Commun Signal, 2022 PubMed Europe PMC Scholia
- Hernandez-Segura A, Nehme J, Demaria M; ''Hallmarks of Cellular Senescence.''; Trends Cell Biol, 2018 PubMed Europe PMC Scholia
- Vidar Hansen T, Serhan CN; ''Protectins: Their biosynthesis, metabolism and structure-functions.''; Biochem Pharmacol, 2022 PubMed Europe PMC Scholia
- Musiek ES, Cha JK, Yin H, Zackert WE, Terry ES, Porter NA, Montine TJ, Morrow JD; ''Quantification of F-ring isoprostane-like compounds (F4-neuroprostanes) derived from docosahexaenoic acid in vivo in humans by a stable isotope dilution mass spectrometric assay.''; J Chromatogr B Analyt Technol Biomed Life Sci, 2004 PubMed Europe PMC Scholia
- Cormenier J, Martin N, Desl�ƒÆ’�†â€™�ƒâ€ �¢â‚¬â„¢�ƒÆ’�¢â‚¬Å¡�ƒâ€š�‚© J, Salazar-Cardozo C, Pourtier A, Abbadie C, Pluquet O; ''The ATF6�ƒÆ’�†â€™�ƒâ€¦�‚½�ƒÆ’�¢â‚¬Å¡�ƒâ€š�‚± arm of the Unfolded Protein Response mediates replicative senescence in human fibroblasts through a COX2/prostaglandin E2intracrine pathway.''; Mech Ageing Dev, 2018 PubMed Europe PMC Scholia
- Palla AR, Ravichandran M, Wang YX, Alexandrova L, Yang AV, Kraft P, Holbrook CA, Schürch CM, Ho ATV, Blau HM; ''Inhibition of prostaglandin-degrading enzyme 15-PGDH rejuvenates aged muscle mass and strength.''; Science, 2021 PubMed Europe PMC Scholia
- Xiaoping Wang, Huanping Lin, Yan Gu; ''''; , PubMed Europe PMC Scholia
- Christopher D. Wiley, Rishi Sharma, Sonnet S. Davis, Marco Demaria, Arvind Ramanathan, Judith Campisi; ''Oxylipin biosynthesis reinforces cellular senescence and allows detection of senolysis.''; Cell Metabolism, 2021
- Sala A, Voelkel N, Maclouf J, Murphy RC; ''Leukotriene E4 elimination and metabolism in normal human subjects.''; J Biol Chem, 1990 PubMed Europe PMC Scholia
- Joachim Fauler, Dimitrios Tsikas, Ertan Mayatepek, Dietrich Keppler, Jurgen C. Frolich; ''Impaired Degradation of Prostaglandins and Thromboxane in Zellweger Syndrome''; International Pediatric Research Foundation, 1994
- Samar Basu; ''''; , PubMed Europe PMC Scholia
- Yang P, Jiang Y, Fischer SM; ''Prostaglandin E3 metabolism and cancer.''; Cancer Lett, 2014 PubMed Europe PMC Scholia
- Serhan CN, Levy BD; ''Resolvins in inflammation: emergence of the pro-resolving superfamily of mediators.''; J Clin Invest, 2018 PubMed Europe PMC Scholia
- R P Goodman, A P Killam, A R Brash, R A Branch; ''Prostacyclin production during pregnancy: Comparison of production during normal pregnancy and pregnancy complicated by hypertension''; , 1982 PubMed Europe PMC Scholia
- Reich EE, Zackert WE, Brame CJ, Chen Y, Roberts LJ 2nd, Hachey DL, Montine TJ, Morrow JD; ''Formation of novel D-ring and E-ring isoprostane-like compounds (D4/E4-neuroprostanes) in vivo from docosahexaenoic acid.''; Biochemistry, 2000 PubMed Europe PMC Scholia
- Adachi H, Kubota I, Okamura N, Iwata H, Tsujimoto M, Nakazato H, Nishihara T, Noguchi T; ''Purification and characterization of human microsomal dipeptidase.''; J Biochem, 1989 PubMed Europe PMC Scholia
- William L Smith; ''Cyclooxygenases, peroxide tone and the allure of fish oil''; Curr Opin Cell Biol, 2005 PubMed Europe PMC Scholia
- Hahn, Elisabeth L. PhD, He, Li-Ke MD, Gamelli, and Richard L. MD; ''Prostaglandin E2 Synthesis and Metabolism in Burn Injury and Trauma''; https://journals.lww.com/jtrauma/Fulltext/2000/12000/Prostaglandin_E2_Synthesis_and_Metabolism_in_Burn.33.aspx,
- Reinertsen AF, Primdahl KG, Shay AE, Serhan CN, Hansen TV, Aursnes M; ''Stereoselective Synthesis and Structural Confirmation of the Specialized Pro-Resolving Mediator Resolvin E4.''; J Org Chem, 2021 PubMed Europe PMC Scholia
- Nourooz-Zadeh J, Cooper MB, Ziegler D, Betteridge DJ; ''Urinary 8-epi-PGF2alpha and its endogenous beta-oxidation products (2,3-dinor and 2,3-dinor-5,6-dihydro) as biomarkers of total body oxidative stress.''; Biochem Biophys Res Commun, 2005 PubMed Europe PMC Scholia
- Deng B, Wang CW, Arnardottir HH, Li Y, Cheng CY, Dalli J, Serhan CN; ''Maresin biosynthesis and identification of maresin 2, a new anti-inflammatory and pro-resolving mediator from human macrophages.''; PLoS One, 2014 PubMed Europe PMC Scholia
- Kramer RM, Roberts EF, Um SL, Börsch-Haubold AG, Watson SP, Fisher MJ, Jakubowski JA; ''p38 mitogen-activated protein kinase phosphorylates cytosolic phospholipase A2 (cPLA2) in thrombin-stimulated platelets. Evidence that proline-directed phosphorylation is not required for mobilization of arachidonic acid by cPLA2.''; J Biol Chem, 1996 PubMed Europe PMC Scholia
- Yung-Sheng Huang, Wen-Cheng Huang, Chi-Wei LI, Lu-Te Chuang; ''''; , PubMed Europe PMC Scholia
- Kortlever RM, Higgins PJ, Bernards R; ''Plasminogen activator inhibitor-1 is a critical downstream target of p53 in the induction of replicative senescence.''; Nat Cell Biol, 2006 PubMed Europe PMC Scholia
- K Watanabe, Y Iguchi, S Iguchi, Y Arai, O Hayaishi, L J Roberts; ''Stereospecific conversion of prostaglandin D2 to (5Z,13E)-(15S)-9 alpha-11 beta,15-trihydroxyprosta-5,13-dien-1-oic acid (9 alpha,11 beta-prostaglandin F2) and of prostaglandin H2 to prostaglandin F2 alpha by bovine lung prostaglandin F synthase.''; National Library of Medicine, 1986 PubMed Europe PMC Scholia
- Li QF, Hao H, Tu WS, Guo N, Zhou XY; ''Maresins: anti-inflammatory pro-resolving mediators with therapeutic potential''; https://www.europeanreview.org/wp/wp-content/uploads/7442-7453.pdf, 2020
- Wen-Ling Chou, Lee-Ming Chuang, Chi-Chi Chou, Andrew H-J Wang, John A Lawson, Garret A FitzGerald, Zee-Fen Chang; ''Identification of a Novel Prostaglandin Reductase Reveals the Involvement of Prostaglandin E2 Catabolism in Regulation of Peroxisome Proliferator-activated Receptor γ Activation''; , 2007 PubMed Europe PMC Scholia
- Granström E, Fitzpatrick FA, Kindahl H; ''Radioimmunologic determination of 15-keto-13,14-dihydro-PGE2: a method for its stable degradation product, 11-deoxy-15-keto-13,14-dihydro-11 beta, 16 xi-cyclo-PGE2.''; Methods Enzymol, 1982 PubMed Europe PMC Scholia
History
View all... |
External references
DataNodes
View all... |
Name | Type | Database reference | Comment |
---|---|---|---|
Oncogene-induced senescence(RAS) | |||
10,11,dihydro-12-oxo-RvE1 | Metabolite | CHEBI:165276 (ChEBI) | |
10,11-dihydro-RvE1 | Metabolite | CHEBI:165277 (ChEBI) | |
10-D4-NeuroP | Metabolite | LMFA04010186 (LIPID MAPS) | |
10-E4-NeuroP | Metabolite | LMFA04010314 (LIPID MAPS) | |
10-F4-NeuroP | Metabolite | LMFA04010005 (LIPID MAPS) | |
10-G4-NeuroP* | Metabolite | ||
10-H4-NeuroP | Metabolite | CHEBI:185511 (ChEBI) | |
10-dihomo-F2-IsoP | Metabolite | LMFA03110315 (LIPID MAPS) | |
10R/S,17S-dihydroxy-DHA | Metabolite | ||
10S,17S-11E,13Z,15E-diHpDHA | Metabolite | ||
10S,17S-dihydroxy-DHA | Metabolite | CHEBI:138653 (ChEBI) | |
10epi-S15Δ-trans PD1 | Metabolite | ||
11,15-dioxo-9α-hydroxy-, 2,3,4,5-tetranorprostan-1,20-dioic acid* | Metabolite | ||
11-D4-NeuroP | Metabolite | LMFA04010202 (LIPID MAPS) | |
11-E4-NeuroP | Metabolite | LMFA04010330 (LIPID MAPS) | |
11-F3-IsoP | Metabolite | ||
11-F4-NeuroP | Metabolite | LMFA04010006 (LIPID MAPS) | |
11-G3-IsoP | Metabolite | ||
11-G4-NeuroP* | Metabolite | ||
11-H3-IsoP | Metabolite | ||
11-H4-NeuroP | Metabolite | CHEBI:187424 (ChEBI) | |
11-OH-dehydrogenase | GeneProduct | 1.2.1.3 (Enzyme Nomenclature) | |
11-dehydro-Thromboxane B2 | Metabolite | CHEBI:28667 (ChEBI) | |
11-deoxy-13,14-dihydro-15-keto-11,16-cyclo-PGE2* | Metabolite | ||
11-hydroxy-9,15-dioxo-prost-5-en-1,20-dioic acid* | Metabolite | ||
11a-hydroxy-9,15-dioxo-2,3,4,5,20-pentanor-19-carboxyprostanoic acid | Metabolite | CHEBI:73965 (ChEBI) | |
12-15d-J2-IsoP | Metabolite | LMFA03110090 (LIPID MAPS) | Iso-Prostaglandin H2 |
12-A2-IsoP | Metabolite | LMFA03110248 (LIPID MAPS) | Iso-Prostaglandin H2 |
12-D2-IsoK | Metabolite | ||
12-D2-IsoP | Metabolite | LMFA03110085 (LIPID MAPS) | Iso-Prostaglandin H2 |
12-Dioxolane-IsoP | Metabolite | ||
12-E2-IsoK | Metabolite | ||
12-E2-IsoP | Metabolite | LMFA03110190 (LIPID MAPS) | Iso-Prostaglandin H2 |
12-F2-IsoP | Metabolite | LMFA03110042 (LIPID MAPS) | Iso-Prostaglandin H2 |
12-F3-IsoP | Metabolite | ||
12-G2-IsoP | Metabolite | Iso-Prostaglandin G2 | |
12-G3-IsoP | Metabolite | ||
12-H2-IsoP | Metabolite | Iso-Prostaglandin H2 | |
12-H3-IsoP | Metabolite | ||
12-J2-IsoP | Metabolite | LMFA03110087 (LIPID MAPS) | Iso-Prostaglandin H2 |
12-TxA2-IsoP | Metabolite | ||
12-TxB2-IsoP | Metabolite | ||
12-oxo-RvE1 | Metabolite | CHEBI:165264 (ChEBI) | |
13,14-dihydro-15-keto-PGA2 | Metabolite | CHEBI:89315 (ChEBI) | 8: Prostanoid Metabolites as Biomarkers in Human Disease Helena Idborg; Sven-Christian Pawelzik. 2022. PubMed 36005592. |
13,14-dihydro-15-keto-PGD2 | Metabolite | CHEBI:72603 (ChEBI) | DK-PGD2 |
13,14-dihydro-15-keto-PGE2 | Metabolite | CHEBI:15550 (ChEBI) | PGEM= Metabolites downstream of PGE2 |
13,14-dihydro-PGE2* | Metabolite | ||
13,14-dihydro-PGF2a | Metabolite | 88346 (ChEBI) | |
13-D4-NeuroP | Metabolite | LMFA04010218 (LIPID MAPS) | |
13-E4-NeuroP | Metabolite | LMFA04010346 (LIPID MAPS) | |
13-F4-NeuroP | Metabolite | LMFA04010003 (LIPID MAPS) | |
13-G4-NeuroP* | Metabolite | ||
13-H4-NeuroP* | Metabolite | ||
13R-HpDPA* | Metabolite | ||
13S,14S-epoxy-maresin | Metabolite | CHEBI:131958 (ChEBI) | (13R)-S-glutathionyl-(14S)-hydroxy-(4Z,7Z,9E,11E,16Z,19Z)-docosahexaenoic acid |
14-D4-NeuroP | Metabolite | LMFA04010234 (LIPID MAPS) | |
14-E4-NeuroP | Metabolite | LMFA04010362 (LIPID MAPS) | |
14-F4-NeuroP | Metabolite | LMFA04010004 (LIPID MAPS) | |
14-G4-NeuroP* | Metabolite | ||
14-H4-NeuroP | Metabolite | HMDB0062292 (HMDB) | |
14-dihomo-F2-IsoP | Metabolite | LMFA03110331 (LIPID MAPS) | |
14s-HpDHA | Metabolite | CHEBI:136526 (ChEBI) | |
15-15d-J2-IsoP | Metabolite | Iso-Prostaglandin H2 | |
15-A2-IsoP | Metabolite | LMFA03110138 (LIPID MAPS) | Iso-Prostaglandin H2 |
15-D2-IsoK | Metabolite | =LGD2 | |
15-D2-IsoP | Metabolite | LMFA03110099 (LIPID MAPS) | Iso-Prostaglandin H2 |
15-E2-IsoK | Metabolite | =LGE2 | |
15-E2-IsoP | Metabolite | Iso-Prostaglandin H2 | |
15-F2-IsoP | Metabolite | 27415-26-5 (CAS) | = 8-iso-PGF2a |
15-F3-IsoP | Metabolite | CHEBI:157746 (ChEBI) | = 8-epi PGF3 |
15-G2-IsoP | Metabolite | ||
15-G3-IsoP | Metabolite | = 8-epi PGF3 | |
15-H2-IsoP | Metabolite | Iso-Prostaglandin H2 =PGH2 | |
15-H3-IsoP | Metabolite | = 8-epi PGF3 | |
15-J2-IsoP | Metabolite | LMFA03110101 (LIPID MAPS) | Iso-Prostaglandin H2 |
15-TxA2-IsoP | Metabolite | ||
15-TxB2-IsoP | Metabolite | ||
15-deoxy-Δ12,14-PGD2 | Metabolite | CHEBI:63999 (ChEBI) | =15d-PGJ2 |
15-deoxy-Δ12,14-PGJ2 | Metabolite | 34159 (ChEBI) | =15d-PGJ2 |
15-hydroxy PG dehydrogenase*
prostaglandin Δreductase* β-oxidase* | GeneProduct | Lumped reaction | |
15-keto-13,14-dihydro-8-iso-PGF2a | Metabolite | ||
15-keto-13,14-dihydro-PGE1 | Metabolite | 134499 (ChEBI) | |
15-keto-13,14-dihydro-PGE1 | Metabolite | CHEBI:134499 (ChEBI) | |
15-keto-13,14-dihydro-PGF2a | Metabolite | 63976 (ChEBI) | |
15-keto-8-iso-PGF2a | Metabolite | ||
15-keto-PGD2 | Metabolite | CHEBI:15557 (ChEBI) | |
15-keto-PGE1 | Metabolite | 22973-19-9 (CAS) | |
15-keto-PGE2 | Metabolite | 15547 (ChEBI) | |
15-keto-PGF2a | Metabolite | CHEBI:28442 (ChEBI) | |
15-keto-PGI2 | Metabolite | CHEBI:15556 (ChEBI) | =15-dehydro-Prostaglandin I2 |
15-ketoprostaglandin reductase | GeneProduct | 1.3.1.48 (Enzyme Nomenclature) | |
15R-HpEPE | Pathway | via acetalyted cox2 | |
15S-HEPE | Metabolite | CHEBI:88347 (ChEBI) | |
15S-HpEPE | Metabolite | CHEBI:165266 (ChEBI) | |
15S-hydroxy-5S-HpEPE* | Metabolite | ||
15Δ-trans PD1 | Metabolite | ||
16-oxo-RvD2 | Metabolite | CHEBI:138281 (ChEBI) | |
16R/S,17S-dihydroxy-DHA | Metabolite | ||
16S,17S-epoxyprotectins | Metabolite | ||
17-D4-NeuroP | Metabolite | LMFA04010250 (LIPID MAPS) | = 17-F4c-NP |
17-E4-NeuroP | Metabolite | LMFA04010378 (LIPID MAPS) | = 17-F4c-NP |
17-F4-NeuroP | Metabolite | LMFA04010002 (LIPID MAPS) | = 17-F4c-NP |
17-G4-NeuroP* | Metabolite | = 17-F4c-NP | |
17-H4-NeuroP* | Metabolite | = 17-F4c-NP | |
17-dihomo-F2-IsoP | Metabolite | LMFA03110347 (LIPID MAPS) | |
17-oxo-RvD1 | Metabolite | CHEBI:132800 (ChEBI) | |
17R-HDHA | Metabolite | CHEBI:91137 (ChEBI) | |
17R-HpDHA | Metabolite | CHEBI:138590 (ChEBI) | |
17S-HDHA | Metabolite | CHEBI:138640 (ChEBI) | |
17S-HpDHA | Metabolite | CHEBI:136113 (ChEBI) | |
17S-HpDPA | Metabolite | CHEBI:136118 (ChEBI) | |
18-F3-IsoP | Metabolite | ||
18-G3-IsoP | Metabolite | ||
18-H3-IsoP | Metabolite | ||
18-oxo-RvE1 | Metabolite | CHEBI:131617 (ChEBI) | |
18R-HpEPE | Metabolite | CHEBI:138565 (ChEBI) | |
18S-HpEPE* | Metabolite | ||
18S-RvE1 | Metabolite | CHEBI:137038 (ChEBI) | |
18S-RvE2 | Metabolite | CHEBI:137034 (ChEBI) | |
19-OH-6-keto-PGF1a | Metabolite | 172589 (ChEBI) | |
19-OH-PGE1 | Metabolite | 55123-67-6 (CAS) | |
19-OH-PGE2 | Metabolite | CHEBI:165313 (ChEBI) | |
19-OH-PGH2* | Metabolite | ||
19-hydroxy-RvE1 | Metabolite | CHEBI:165268 (ChEBI) | |
2,3 dinor-6-keto-PGF1a* | Metabolite | 73944 (ChEBI) | |
2,3-Dinor-Thromboxane B2 | Metabolite | CHEBI:89991 (ChEBI) | |
2,3-dinor 6-keto pentanor* | Metabolite | ||
2,3-dinor-11β-PGF2* | Metabolite | CHEBI:165323 (ChEBI) | |
2,3-dinor-5,6-dihydro-8-IsoPGF2a | Metabolite | ||
2,3-dinor-8-IsoPGF2a | Metabolite | ||
20-D4-NeuroP | Metabolite | LMFA04010266 (LIPID MAPS) | |
20-E4-NeuroP | Metabolite | LMFA04010394 (LIPID MAPS) | |
20-F4-NeuroP | Metabolite | LMFA04010001 (LIPID MAPS) | |
20-G4-NeuroP* | Metabolite | ||
20-H4-NeuroP* | Metabolite | ||
20-OH-LTB4 | Metabolite | CHEBI:15646 (ChEBI) | |
20-carboxy-RvE1* | Metabolite | ||
20-hydroxy-RvE1 | Metabolite | CHEBI:165269 (ChEBI) | |
4,13-diketo-7,9-dihydroxy-2,3-dinor prostanoic acid* | Metabolite | Lumped reaction | |
4-D4-NeuroP | Metabolite | LMFA04010154 (LIPID MAPS) | |
4-E4-NeuroP | Metabolite | LMFA04010282 (LIPID MAPS) | |
4-F4-NeuroP | Metabolite | LMFA04010008 (LIPID MAPS) | |
4-G4-NeuroP* | Metabolite | ||
4-H4-NeuroP* | Metabolite | ||
4S,5-epoxy-17R-HDHA | Metabolite | CHEBI:187528 (ChEBI) | |
4S,5-epoxy-17S-hydroxy-HDHA | Metabolite | CHEBI:138647 (ChEBI) | |
4S-hydroperoxy-17S-HDHA | Metabolite | CHEBI:138641 (ChEBI) | |
5(S)-HETE | Metabolite | CHEBI:28209 (ChEBI) | |
5-15d-J2-IsoP | Metabolite | LMFA03110075 (LIPID MAPS) | Iso-Prostaglandin H2 |
5-A2-IsoP | Metabolite | LMFA03110257 (LIPID MAPS) | Iso-Prostaglandin H2 |
5-D2-IsoK | Metabolite | ||
5-D2-IsoP | Metabolite | LMFA03110070 (LIPID MAPS) | Iso-Prostaglandin H2 |
5-E2-IsoK | Metabolite | ||
5-E2-IsoP | Metabolite | LMFA03110174 (LIPID MAPS) | Iso-Prostaglandin H2 |
5-F2-IsoP | Metabolite | LMFA03110039 (LIPID MAPS) | Iso-Prostaglandin H2 |
5-F3-IsoP | Metabolite | ||
5-G2-IsoP | Metabolite | Iso-Prostaglandin G2 | |
5-G3-IsoP | Metabolite | ||
5-H2-IsoP | Metabolite | Iso-Prostaglandin H2 | |
5-H3-IsoP | Metabolite | ||
5-HPETE | Metabolite | HMDB11135 (HMDB) | |
5-J2-IsoP | Metabolite | LMFA03110072 (LIPID MAPS) | Iso-Prostaglandin H2 |
5-TxA2-IsoP | Metabolite | ||
5-TxB2-IsoP | Metabolite | ||
5-series leukotrienes | Pathway | ||
5S,12R,18R-TriHEPE* | Metabolite | ||
5S,12S,18R-TriHEPE* | Metabolite | ||
5S,6R,18R-TriHEPE* | Metabolite | ||
5S,6S,18R-TriHEPE* | Metabolite | ||
5S,6S-epoxy-18R-HEPE | Metabolite | CHEBI:132219 (ChEBI) | |
5S,6S-epoxy-18S-HEPE | Metabolite | CHEBI:138490 (ChEBI) | |
5S-hydroxyperoxy-18R-HEPE | Metabolite | CHEBI:81562 (ChEBI) | |
5S-hydroxyperoxy-18S-HEPE | Metabolite | CHEBI:91287 (ChEBI) | |
5α,7α-dihydroxy-11-keto tetranor-prostane-1,16-dioic acid* | Metabolite | ||
6,15-Diketo-13,14-dihydro-2,3-dinor PGF1a* | Metabolite | 6,15-Diketo-13,14-dihydro-2,3-dinor PGF1a = 15 kd dinor | |
6,15-Diketo-13,14-dihydro-PGF1a* | Metabolite | CHEBI:72595 (ChEBI) | |
6,15-diketo PGF1a | Metabolite | ||
6-keto-PGE1 | Metabolite | 28269 (ChEBI) | |
6-keto-PGF1a | Metabolite | 28158 (ChEBI) | |
6-trans-LTB4 | Metabolite | CHEBI:63981 (ChEBI) | |
7,8-epoxy-13R-HDPA* | Metabolite | ||
7-D4-NeuroP | Metabolite | LMFA04010170 (LIPID MAPS) | |
7-E4-NeuroP | Metabolite | LMFA04010298 (LIPID MAPS) | |
7-F4-NeuroP | Metabolite | LMFA04010007 (LIPID MAPS) | |
7-G4-NeuroP* | Metabolite | ||
7-H4-NeuroP* | Metabolite | ||
7-dihomo-F2-IsoP | Metabolite | 7-F2t-dihomo-IsoP (LIPID MAPS) | |
7-hydroperoxy-13R-HpDPA* | Metabolite | ||
7-oxo-RvD2 | Metabolite | CHEBI:138279 (ChEBI) | |
7S,17S-diHpDPA | Metabolite | CHEBI:140248 (ChEBI) | |
7S,8-epoxy-17R-HDHA | Metabolite | CHEBI:138613 (ChEBI) | |
7S,8-epoxy-17S-HDHA | Metabolite | 53477500 (PubChem-compound) | |
7S,8R-epoxy-17S-HDPA* | Metabolite | ||
7S-hydroperoxy-17S-HDHA | Metabolite | CHEBI:140245 (ChEBI) | |
7α-hydroxy-5,11-diketo-tetranorprosta-1,16-dioc acid* | Metabolite | ||
8-15d-J2-IsoP | Metabolite | LMFA03110062 (LipidBank) | Iso-Prostaglandin H2 |
8-A2-IsoP | Metabolite | Iso-Prostaglandin H2 | |
8-D2-IsoK | Metabolite | ||
8-D2-IsoP | Metabolite | LMFA03110057 (LIPID MAPS) | Iso-Prostaglandin H2 |
8-Dioxolane-IsoP | Metabolite | ||
8-E2-IsoK | Metabolite | ||
8-E2-IsoP | Metabolite | LMFA03110003 (LIPID MAPS) | Iso-Prostaglandin H2 |
8-F2-IsoP | Metabolite | 8-F2t-IsoP (LIPID MAPS) | |
8-F3-IsoP | Metabolite | ||
8-G2-IsoP | Metabolite | Iso-Prostaglandin G2 | |
8-G3-IsoP | Metabolite | ||
8-H2-IsoP | Metabolite | Iso-Prostaglandin H2 | |
8-H3-IsoP | Metabolite | ||
8-J2-IsoP | Metabolite | LMFA03110059 (LIPID MAPS) | Iso-Prostaglandin H2 |
8-TxA2-IsoP | Metabolite | ||
8-iso-13,14-dihydro-15-keto-PGE2* | Metabolite | ||
8-oxo-RvD1 | Metabolite | CHEBI:132797 (ChEBI) | |
9,15-dideoxy-Δ9,12,14-PGD2* | Metabolite | ||
9-deoxy-Δ12-PGD2* | Metabolite | 175297 (ChEBI) | |
9-hydroxyprostaglandin dehydrogenase* | GeneProduct | ||
9a, 11a-dihydroxy-11-keto-2,3,4,5-tetranorprostane-1,16-dioic acid* | Metabolite | ||
9alpha,11alpha-PGF2a | Metabolite | CHEBI:15553 (ChEBI) | |
9alpha,11beta-PGF2 | Metabolite | 15553 (ChEBI) | |
9α, 11β-dihydroxy-15-oxo-2,3,18,19-tetranorprost-5-ene-1,20-dioic acid* | Metabolite | ||
ABCC4 | GeneProduct | ENSG00000125257 (Ensembl) | |
AKR1B1 | GeneProduct | ENSG00000085662 (Ensembl) | =aldo-keto reductase family 1 member B |
AKR1C3 | GeneProduct | ENSG00000196139 (Ensembl) | =NADPH-dependent PGD2 11-ketoreductase
=aldo-keto reductase family 1 member C3 =EC 1.1.1.188 |
ALOX12 | GeneProduct | ENSG00000108839 (Ensembl) | Enzyme 12LOX |
ALOX12 | GeneProduct | ENSG00000108839 (Ensembl) | |
ALOX15 | GeneProduct | ENSG00000161905 (Ensembl) | Enzyme:LOX15 |
ALOX15B | GeneProduct | ENSG00000179593 (Ensembl) | =15-LOX-2 =arachidonate 15-lipoxygenase type B |
ALOX15 | GeneProduct | ENSG00000161905 (Ensembl) | |
ALOX5 | GeneProduct | ENSG00000012779 (Ensembl) | |
AT-RvD1 | Metabolite | CHEBI:138179 (ChEBI) | |
AT-RvD2 | Metabolite | CHEBI:138614 (ChEBI) | |
AT-RvD3 | Metabolite | CHEBI:138615 (ChEBI) | |
AT-RvD4 | Metabolite | CHEBI:138616 (ChEBI) | |
Adrenic acid (22:4,w6) | Metabolite | 53487 (ChEBI) | |
Albumin-mediated degradation | Complex | ||
Arachidonic Acid (20:4,w6) | Metabolite | 15843 (ChEBI) | |
Beta-oxidation | |||
CMKLR1 | Complex | ENSG00000174600 (Ensembl) | =ChemR23 |
CYP4F8 | GeneProduct | ENSG00000186526 (Ensembl) | =cytochrome P450 family 4 subfamily F member 8 |
CYP8A1 | GeneProduct | ENSG00000124212 (Ensembl) | =prostaglandin I2 synthase =PTGIS |
Ca2+ | Metabolite | CHEBI:29108 (ChEBI) | calcium |
Carbonyl reductase* | GeneProduct | ||
Cell Cycle Arrest Senescence | |||
CysLT1R | Protein | ENSG00000173198 (Ensembl) | =cysteinyl leukotriene type 1 receptor |
Cytosolic phospholipase A2 | Protein | P47712 (Uniprot-TrEMBL) | |
DH-15d-Δ12,14-PGD2 | Metabolite | CHEBI:165317 (ChEBI) | |
DH-PGD2* | Metabolite | ||
DH-PGE2 | Metabolite | CHEBI:185711 (ChEBI) | |
DH-PGF1a* | Metabolite | ||
DH-PGF2a | Metabolite | CHEBI:183014 (ChEBI) | |
DH-PGG2* | Metabolite | ||
DH-PGH2* | Metabolite | ||
DH-PGI2 | Metabolite | CHEBI:165328 (ChEBI) | |
DH-PGJ2 | Metabolite | CHEBI:165318 (ChEBI) | |
DH-TxA2* | Metabolite | ||
DH-TxB* | Metabolite | ||
DNA damage-induced senescence Oncogene-induced senescence | |||
DPEP1 | GeneProduct | ENSG00000015413 (Ensembl) | dipeptidase 1 |
DPEP1 | GeneProduct | ENSG00000015413 (Ensembl) | =Human microsomal dipeptidase (MDP, formerly referred to as dehydropeptidase-I or renal dipeptidase) [EC 3.4.13.11] |
DPEP2 | GeneProduct | ENSG00000167261 (Ensembl) | |
Dehydrase | GeneProduct | ||
Dehydration | |||
Dehydration* | |||
Dihomo-15d-PGJ2 | Metabolite | 16061095 (PubChem-compound) | =1a,1b-dihomo-15-deoxy-Δ12,14-prostaglandin J2 |
Dihomo-y-linolenic acid (DGLA) (20:3,w6) | Metabolite | CHEBI:53486 (ChEBI) | = 8,11,14-Eicosatrienoic acid =DGLA |
Dinor-4,13-diketo-7,9-dihydroxy-prostan-1,18-dioic acid* | Metabolite | ||
Dinor-4,13-diketo-7,9-dihydroxy-prostanoic acid* | Metabolite | ||
Dinor-4-keto-7,9,13-trihydroxy-prosta-11,12-enoic acid* | Metabolite | ||
Docosahexaenoic acid (DHA) (22:6,w3) | Metabolite | CHEBI:36005 (ChEBI) | |
Docosapentaenoic acid (DPA) (22:5,w3) | Metabolite | CHEBI:53488 (ChEBI) | |
EETs | Pathway | ||
ELOVL2 | GeneProduct | ENSG00000197977 (Ensembl) | |
ELOVL5 | GeneProduct | ENSG00000012660 (Ensembl) | fatty acid elongase 5 |
Eicosadienoic acid (20:2,w6) | Metabolite | CHEBI:73731 (ChEBI) | |
Eicosapentaenoic acid (EPA) (20:5,w3) | Metabolite | CHEBI:28364 (ChEBI) | |
Eicosatetraenoic acid (ETA) (20:4,w3) | Metabolite | CHEBI:166893 (ChEBI) | |
Eicosatrienoic acid (20:3,w3) | Metabolite | 5312529 (PubChem-compound) | |
Elongase | GeneProduct | ||
Enzymatic Epoxidation | |||
Enzymatic Hydrolysis | Protein | ||
Enzymatic dehydrogenation | GeneProduct | ||
Enzymatic β and w oxidation* | |||
Excretion | |||
Excretion via urine | |||
FADS1 | GeneProduct | ENSG00000149485 (Ensembl) | Δ5-Desaturase |
FADS2 | GeneProduct | ENSG00000134824 (Ensembl) | |
FLAP | GeneProduct | ENSG00000132965 (Ensembl) | gene = ALOX5AP FLAP= 5-lipoxygenase activating protein |
FPR2 | GeneProduct | ENSG00000171049 (Ensembl) | =formyl peptide receptor 2 =ALX |
Free radical-catalyzed peroxidation | |||
GGT1 | GeneProduct | ENSG00000100031 (Ensembl) | |
GGT5 | GeneProduct | ENSG00000099998 (Ensembl) | =gamma-glutamyltransferase 5 |
GGT | GeneProduct | ENSG00000100031 (Ensembl) | gamma-glutamyltransferase 1 |
GPR32 | GeneProduct | ENSG00000142511 (Ensembl) | =G protein-coupled receptor 32 =RVDR1 |
GPx-4 | Protein | ENSG00000167468 (Ensembl) | Glutathione Peroxidase 4 |
GSTM4s/LTC4s | GeneProduct | ENSG00000168765 (Ensembl) | glutathione S-transferase mu 4 |
Gi | Complex | ||
Gq | Complex | ||
Gs | Complex | PGI2 binding to the associated IP receptor (coupled to Gs) leads to an activation of the AC and thus to an increase of intracellular cAMP. Its elevation downregulates store-mediated calcium entry, calcium mobilization and secretion, as well as platelet adhesion to subendothelial collagen via integrin α2β1. The cAMP increase further results in an activation of protein kinase-A (PKA) and in principle, in an inhibition of platelet activation. Analogous to cAMP, PKA activity has been associated with a reduced Ca2+ release from intra-platelet stores | |
H-PGDS | GeneProduct | ENSG00000163106 (Ensembl) | |
HETEs | Pathway | ||
HPGD | GeneProduct | ENSG00000164120 (Ensembl) | 15-PGDH=15-hydroxy-prostaglandin dehydrogenase |
HPGD | GeneProduct | ENSG00000164120 (Ensembl) | |
Hydrolase* | GeneProduct | ||
Hydrolysis (Unknown Hydrolase) | Protein | ||
Hydrolysis* | GeneProduct | ||
IP3 | Complex | CHEBI:16595 (ChEBI) | |
Irradiation-induced Senescence | |||
Irradiation-induced Senescence Oncogene-induced senescence (RAS) | |||
Irradiation-induced senescence | |||
Isofuranes | Pathway | ||
L-PGDS | GeneProduct | ENSG00000107317 (Ensembl) | |
LGD2 | Metabolite | CHEBI:34820 (ChEBI) | Levuglandin D2 |
LGE2 | Metabolite | CHEBI:34821 (ChEBI) | Levuglandin E2 |
LGR6 receptor | Metabolite | ||
LTA4 | Metabolite | CHEBI:15651 (ChEBI) | |
LTA4H | GeneProduct | ENSG00000111144 (Ensembl) | |
LTB4 | Metabolite | CHEBI:15647 (ChEBI) | |
LTC4 | Metabolite | CHEBI:16978 (ChEBI) | |
LTC4S | GeneProduct | ENSG00000213316 (Ensembl) | |
LTD4 | Metabolite | CHEBI:28666 (ChEBI) | |
LTE4 | Metabolite | CHEBI:15650 (ChEBI) | |
Leukotriene 3-series | Pathway | ||
Linoleic acid (LA) (18:2,w6) | Metabolite | 17351 (ChEBI) | LA (18:2 w6) |
Lipoxins | Pathway | ||
Lipoxins
Eoxins Protectins Resolvins Maresins | Pathway | ||
MAPK cascade | Metabolite | ||
MCTR1 | Metabolite | CHEBI:138202 (ChEBI) | (13R)-S-glutathionyl-(14S)-hydroxy-(4Z,7Z,9E,11E,16Z,19Z)-docosahexaenoic acid |
MCTR2 | Metabolite | CHEBI:138206 (ChEBI) | (13R)-S-cysteinylglycinyl-(14S)-hydroxy-(4Z,7Z,9E,11E,16Z,19Z)-docosahexaenoic acid |
MCTR3 | Metabolite | CHEBI:138209 (ChEBI) | (13R)-S-cysteinyl-(14S)-hydroxy-(4Z,7Z,9E,11E,16Z,19Z)-docosahexaenoic acid |
Maresin 1 | Metabolite | CHEBI:138249 (ChEBI) | 7R,14S-dihydroxy-4Z,8E,10E,12Z,16Z,19Z-docosahexaenoic acid |
Maresin 2 | Metabolite | CHEBI:138248 (ChEBI) | (13R,14S)-dihydroxy-(4Z,7Z,9E,11E,16Z,19Z)-docosahexaenoic acid |
Maresins | Pathway | ||
Membrane phospholipids | Metabolite | CHEBI:16247 (ChEBI) | |
Mitochondrial dysfunction-associated senescence Oncogene-induced senescence | |||
Mitochondrial dysfunction-associated senescence Oncogene-induced senescence(RAS) | |||
Mitochondrial dysfunction-associated senescence
Oncogene-induced senescence(RAS) | |||
Mitochondrial dysfunction-associated senescence
Oncogene-induced senescence(RAS) Irradiation-induced senescence | |||
Neurofuranes | |||
Non-enzymatic | |||
Non-enzymatic degradation | |||
Non-enzymatic Hydrolysis | Protein | ||
Non-enzymatic dehydration | |||
Non-enzymatic hydrolysis | |||
Non-enzymatic,albumin-mediated degradation | |||
Oncogene-induced senescence
DNA damage-induced senescence Oxidative stress-induced senescence Replicative senescence Irradiation-induced senescence | |||
Oncogene-induced senescence(RAS) | |||
Osbond acid (22:5,w6) | Metabolite | CHEBI:65136 (ChEBI) | =docosapentaenoic acid (DPAω6, 22:5) |
P450 | GeneProduct | ||
PAI-1 | Protein | ENSG00000106366 (Ensembl) | Gene: SERPINE1 |
PDX | Metabolite | 138653 (ChEBI) | (4Z,7Z,10S,11E,13Z,15E,17S,19Z)-10,17-dihydroxydocosahexaenoic acid |
PG-9KR | GeneProduct | ENSG00000159228 (Ensembl) | PG-9KR= Prostaglandin-9-ketoreductase |
PGA Isomerase | GeneProduct | ||
PGA1 | Metabolite | 14152-28-4 (CAS) | |
PGA2 | Metabolite | 27820 (ChEBI) | PGA2=Prostaglandin A2 |
PGB1 | Metabolite | CHEBI:27624 (ChEBI) | |
PGB2 | Metabolite | 28099 (ChEBI) | PGB2=Prostaglandin B2 |
PGC Isomerase | GeneProduct | ||
PGC1 | Metabolite | CHEBI:15546 (ChEBI) | |
PGC2 | Metabolite | 27555 (ChEBI) | PGC2=Prostaglandin C2 |
PGD1 | Metabolite | 27696 (ChEBI) | |
PGD2 | Metabolite | 15555 (ChEBI) | |
PGD3 | Metabolite | CHEBI:34939 (ChEBI) | |
PGDS | GeneProduct | 5.3.99.2 (Enzyme Nomenclature) | |
PGE 19-hydroxylase | GeneProduct | ||
PGE1 | Metabolite | 15544 (ChEBI) | |
PGE2 | Metabolite | 15551 (ChEBI) | |
PGE3 | Metabolite | CHEBI:28031 (ChEBI) | |
PGES | GeneProduct | 5.3.99.3 (Enzyme Nomenclature) | |
PGF1a | Metabolite | 28852 (ChEBI) | |
PGF3a | Metabolite | CHEBI:36075 (ChEBI) | |
PGFS | GeneProduct | 1.1.1.188 (Enzyme Nomenclature) | =Prostaglandin F synthase |
PGG1 | Metabolite | 133739 (ChEBI) | |
PGG2 | Metabolite | 27647 (ChEBI) | Prostaglandin G2 is abbreviated as PGG2 |
PGG3 | Metabolite | CHEBI:134406 (ChEBI) | |
PGH1 | Metabolite | 91133 (ChEBI) | |
PGH2 | Metabolite | 15554 (ChEBI) | PGH2 is the abbreviation of PGG2 |
PGH3 | Metabolite | CHEBI:134407 (ChEBI) | |
PGI1* | Metabolite | ||
PGI2 | Metabolite | CHEBI:15552 (ChEBI) | Synonym for PGI2 is "Prostacyclin" |
PGI3 | Metabolite | ||
PGIS | GeneProduct | 5.3.99.4 (Enzyme Nomenclature) | |
PGJ2 | Metabolite | 27485 (ChEBI) | |
PPARγ | Complex | ||
PRAK/MAPKAPK5 | Metabolite | ||
PTGDR2 | Complex | ENSG00000183134 (Ensembl) | =prostaglandin D2 receptor 2 =DP2 |
PTGDR | Complex | ENSG00000168229 (Ensembl) | =prostaglandin D2 receptor =DP1 |
PTGER1 | Complex | ENSG00000160951 (Ensembl) | =prostaglandin E receptor 1 =EP1 |
PTGER2 | Complex | ENSG00000125384 (Ensembl) | =prostaglandin E receptor 2 =EP2 |
PTGER3 | Complex | ENSG00000050628 (Ensembl) | =prostaglandin E receptor 3 =EP3 |
PTGER4 | Complex | ENSG00000171522 (Ensembl) | =prostaglandin E receptor 4 =EP4 |
PTGES | GeneProduct | ENSG00000148344 (Ensembl) | =microsomal prostaglandin E synthase 1 (mPGES-1) |
PTGES2 | GeneProduct | ENSG00000148334 (Ensembl) | =microsomal prostaglandin E synthase 2 (PTGES2) |
PTGES3 | GeneProduct | ENSG00000110958 (Ensembl) | =prostaglandin E synthase 3 (cPGES) |
PTGFR | Complex | ENSG00000122420 (Ensembl) | Prostaglandin F receptor : FP
Activation of FP by PGF2α results in the IP3 and DAG formation as well as in the mobilization of Ca2+. |
PTGIR | Complex | ENSG00000160013 (Ensembl) | prostaglandin I2 receptor |
PTGS1 | GeneProduct | ENSG00000095303 (Ensembl) | =Prostaglandin-endoperoxide synthase 1 =cyclooxygenase (COX) |
PTGS2 | GeneProduct | Alternatively, RvDs biosynthesis can be initiated by the aspirin-dependent acetylated COX-2 enzyme to give the 17R-series RvDs. In fact, acetylated COX-2 in the presence of aspirin acts as a modified dioxygenase by introducing an oxygen molecule with opposite stereochemistry. The RvDs biosynthesized through aspirin and acetylated COX-2 also undergo lipid oxidation catalysed by 15-LO and 5-LO, epoxidation, and hydrolysis processes, forming AT-RvDs | |
PTGS2 | GeneProduct | ENSG00000073756 (Ensembl) | |
Paracrine senescence | |||
Peroxidase | |||
Peroxidase* | GeneProduct | ||
Phospholipase (cPLA2α) | GeneProduct | ||
Prostaglandin F synthase | |||
Prostaglandin [c] | Metabolite | ||
Prostaglandin [e] | Metabolite | ||
Protectin D1 | Metabolite | 195348 (ChEBI) | |
Protectin D2 | Metabolite | ||
RAS | Metabolite | ||
RORalpha | Metabolite | ||
ROS | Metabolite | 26523 (ChEBI) | |
Radiation-induced senescence | |||
Radiation-induced senescence Oncogene-induced senescence(RAS) | |||
Rb | GeneProduct | ENSG00000139687 (Ensembl) | |
Reduction | |||
Reduction* | |||
Replicative senescence | |||
Replicative senescence
Radiation-induced senescence Mtochondrial dysfunction-associated senescence Oncogene-induced senescence | Pathway | ||
RvD1(n-3 DPA)* | Metabolite | ||
RvD1 | Metabolite | CHEBI:81564 (ChEBI) | |
RvD2(n-3 DPA)* | Metabolite | ||
RvD2 | Metabolite | CHEBI:81565 (ChEBI) | |
RvD3 | Metabolite | CHEBI:138648 (ChEBI) | |
RvD4 | Metabolite | CHEBI:138649 (ChEBI) | |
RvD5 | Metabolite | ||
RvD5(n-3 DPA)* | Metabolite | ||
RvD6 | Metabolite | CHEBI:138643 (ChEBI) | |
RvE1 | Metabolite | CHEBI:81559 (ChEBI) | |
RvE2 | Metabolite | CHEBI:81560 (ChEBI) | |
RvE3 | Metabolite | CHEBI:138542 (ChEBI) | |
RvE4 | Metabolite | 1025684-60-9 (CAS) | |
RvT1 | Metabolite | CHEBI:137011 (ChEBI) | |
RvT2 | Metabolite | CHEBI:137018 (ChEBI) | |
RvT3 | Metabolite | CHEBI:137019 (ChEBI) | |
RvT4 | Metabolite | CHEBI:137020 (ChEBI) | |
SASP | Pathway | ||
SASP | Pathway | WP3391 (WikiPathways) | |
SEH | |||
SIRT1 | GeneProduct | ENSG00000096717 (Ensembl) | |
SLCO2A1 | GeneProduct | ENSG00000174640 (Ensembl) | |
Senescence phenotype | Pathway | ||
Senescence | Pathway | WP615 (WikiPathways) | |
Spontaneous hydrolysis | |||
Stearidonic acid (SDA) (18:4,w3) | Metabolite | CHEBI:32389 (ChEBI) | |
TBXA2R | Complex | ENSG00000006638 (Ensembl) | =thromboxane A2 receptor |
TBXAS1 | GeneProduct | ENSG00000059377 (Ensembl) | =CYP5A1 |
TXAS | GeneProduct | 5.3.99.5 (Enzyme Nomenclature) | |
TxA1* | Metabolite | ||
TxA3 | Metabolite | ||
TxA | Metabolite | CHEBI:15627 (ChEBI) | |
TxB1 | Metabolite | 71668258 (PubChem-compound) | |
TxB | Metabolite | CHEBI:28728 (ChEBI) | |
Unknown | |||
a-Linolenic acid (ALA) (18:3,w3) | Metabolite | CHEBI:27432 (ChEBI) | IUPAC Name: (9Z,12Z,15Z)-octadeca-9,12,15-trienoic acid |
alpha-tetranor-15-keto-13,14-dihydro-8-iso-PGF2a | Metabolite | ||
cAMP | Metabolite | CHEBI:17489 (ChEBI) | PGI2 binding to the associated IP receptor (coupled to Gs) leads to an activation of the AC and thus to an increase of intracellular cAMP. Its elevation downregulates store-mediated calcium entry, calcium mobilization and secretion, as well as platelet adhesion to subendothelial collagen via integrin α2β1. The cAMP increase further results in an activation of protein kinase-A (PKA) and in principle, in an inhibition of platelet activation. Analogous to cAMP, PKA activity has been associated with a reduced Ca2+ release from intra-platelet stores |
elongation
delta6 desaturation beta-oxidation | |||
epoxide hydrolysis | |||
h15-LOX1 | Protein | ||
p21 | GeneProduct | ENSG00000124762 (Ensembl) | Gene: CDKN1A |
p38 MAPK | GeneProduct | ENSG00000185386 (Ensembl) | |
p53 | GeneProduct | ||
p53 | Metabolite | CHEBI:77731 (ChEBI) | |
p53 | GeneProduct | ENSG00000141510 (Ensembl) | |
p53S37 | Metabolite | ||
w-hydroxylase* | |||
y-linolenic acid (GLA) (18:3,w6) | Metabolite | 28661 (ChEBI) | GLA(18:3 w6) |
Δ12-PGD2 | Metabolite | ||
Δ12-PGJ2 | Metabolite | CHEBI:28130 (ChEBI) | Synonym: 9-Deoxy-delta(9,12)-13,14-dihydro PGD2 |
Δ13-reductase | GeneProduct | 1.3.1.48 (Enzyme Nomenclature) | =15-oxoprostaglandin-Δ13-reductase |
Δ6-trans-12-epi-leukotriene B4 | Metabolite | CHEBI:63982 (ChEBI) | |
Δ9-Elongase* | |||
β and ω oxidation* | |||
β-oxidase* | GeneProduct | ||
β-oxidation | Complex | ||
β-oxidation* |
Annotated Interactions
No annotated interactions