Lactate shuttle in glial cells (Homo sapiens)
From WikiPathways
Description
In astrocytes, glucose undergoes glycolysis to be converted into pyruvate, which is then converted into lactate with the help of the LDHA enzyme. Lactate is then transported from astrocytes to neurons through the transporters SLC16A1, SLC16A3 and SLC16A7. There, lactate is converted to pyruvate with the help of the LDHB enzyme. Pyruvate formation is also increased by glucose entering the neuron through the SLC2A3 transporter, which undergoes glycolysis. Pyruvate enters the TCA cycle in the mitochondria of the neuron and ATP is produced. The ATP generated in the neurons is required for the glutamate neurotransmitters to be excreted from neurons into the synaptic cleft. Astrocytes take up the glutamate neurotransmitters through the transporter SLC1A2. For glutamate to be transported into the cell by the SLC1A2 transporter, Na+ must be cotransported into the cell. This increase in concentration of sodium ions inside the astrocyte is balanced by Na+/K+ ATPase which transports Na+ out of the cell while simultaneously transporting K+ into the cell. This transporter requires ATP to be activated, and the ADP produced can be regenerated into ATP during glycolysis in the astrocytes.
This lactate shuttle theory explains that lactate from astrocytes is preferentially used over glucose by neurons in a fully aerobic state and is the main supply of energy to our neurological system.Quality Tags
Ontology Terms
Bibliography
View all... |
- Valvona, C. J., Fillmore, H. L., Nunn, P. B., & Pilkington, G. J.; ''The Regulation and Function of Lactate Dehydrogenase A: Therapeutic Potential in Brain Tumor.''; https://doi.org/10.1111/bpa.12299, 2015 DOI Scholia
- Stridh, M. H., Alt, M. D., Wittmann, S., Heidtmann, H., Aggarwal, M., Riederer, B., Seidler, U., Wennemuth, G., McKenna, R., Deitmer, J. W., & Becker, H. M.; ''Lactate flux in astrocytes is enhanced by a non-catalytic action of carbonic anhydrase II.''; https://doi.org/10.1113/jphysiol.2011.220152, 2012 DOI Scholia
- Siracusa, R., Fusco, R., & Cuzzocrea, S.; ''Astrocytes: Role and Functions in Brain Pathologies. Frontiers in Pharmacology,''; https://doi.org/10.3389/fphar.2019.01114, 2019 DOI Scholia
- Ouyang, L., Tian, Y., Bao, Y., Xu, H., Cheng, J., Wang, B., Shen, Y., Chen, Z., & Lyu, J.; ''Carnosine decreased neuronal cell death through targeting glutamate system and astrocyte mitochondrial bioenergetics in cultured neuron/astrocyte exposed to OGD/recovery.''; https://doi.org/10.1016/j.brainresbull.2016.03.019, 2016 DOI Scholia
- Beard, E., Lengacher, S., Dias, S., Magistretti, P. J., & Finsterwald, C.; ''Astrocytes as Key regulators of brain energy metabolism: New therapeutic perspectives''; https://doi.org/10.3389/fphys.2021.825816, 2022 DOI Scholia
- Bélanger, M., Allaman, I., & Magistretti, Pierre J.; ''Brain Energy Metabolism: Focus on Astrocyte-Neuron Metabolic Cooperation.''; https://doi.org/10.1016/j.cmet.2011.08.016, 2011 DOI Scholia
- Bröer, S. and Brookes, N.; ''Transfer of glutamine between astrocytes and neurons. ''; https://doi.org/10.1046/j.1471-4159.2001.00322.x, 2001 DOI Scholia
- Souza, A. de A., da Silva, G. S. S., Velez, B. S., Santoro, A. B. M., & Montero-Lomelí, M.; ''Glycogen synthesis in brain and astrocytes is inhibited by chronic lithium treatment.''; https://doi.org/10.1016/j.neulet.2010.07.016, 2010 DOI Scholia
- Koch, H., & Weber, Y. G.; ''The glucose transporter type 1 (Glut1) syndromes. Epilepsy & Behavior''; https://doi.org/10.1016/j.yebeh.2018.06.010, 2019 DOI Scholia
- Suzuki, A., Stern, Sarah A., Bozdagi, O., Huntley, George W., Walker, Ruth H., Magistretti, Pierre J., & Alberini, Cristina M.; ''Astrocyte-Neuron Lactate Transport Is Required for Long-Term Memory Formation.''; https://doi.org/10.1016/j.cell.2011.02.018, 2011 DOI Scholia
- Brown, A. M., & Ransom, B. R.; ''Astrocyte glycogen and brain energy metabolism.''; https://doi.org/10.1002/glia.20557, 2007 DOI Scholia
History
View all... |
External references
DataNodes
View all... |
Annotated Interactions
No annotated interactions