Pluripotent stem cell differentiation pathway (Homo sapiens)

From WikiPathways

Jump to: navigation, search
1Definitive endodermFP6SortSerumEndodermal3D matrigel cultureAnterior endodermDAPTTGFB1SB431542FGF2NOGBMP4BMP4NiacinamideAscorbic acidRACXCR1SHHSeleniumA-83-01NT5ECyclopamineES/IPS cellsKITEGFVEGFAFGF4IGF1HGFNOTCH1EGFBMP4NOGWNT3AMultipotent LungProgenitorsHindgut endodermMultipotent endodermalprogenitor cellsHGFFGF4EGFNODALFGF10RAFGF10Intestinal Tissueخ² cellsPancreatic progenitorsHepatocytesHepaticprogenitorsBMP4VEGFASCFTPOFLT3LGSCFCSF1IL6IL3VEGFABMP4SCFTPOIL3EPOINHBAFGF2BMP4FLT3LGTPOFGF2VEGFAFGF2SB431542TGFB1PDGFBIL3IL6VEGFASCFIL11DKK1VEGFAWNT1DKK1WNT1VEGFATGFB3NTF4FGF2BMP4FSTNTF4BMP4FGF2GDF5HemangioblastErythropoietic cellsLymphoid progenitorsOsteoclastsEndothelial cellsCardiomyocytesSmooth muscle cellsSkeletal myoblastsOsteogenic cellsMesenchymal stem/precursor cellsAscorbic acidBeta-Glycerophosphoric acidDexamethasoneDexamethasoneINSINSTFOP-9cocultureOP-9 coculture Semisolid cultureOP-9 orMS-5cocultureSortSemisolid cultureMesenchymo-angioblastAdipogenicCellHematopoieticprogenitorsMonocyte/macrophageprogenitorChondrogeniccellsCardiovascular colonyforming cellsVEGFATPOEPOIL6IL3IL11CSF1RTNFSF11Primitive streakMesodermBMP4WNT2B47WNT5AWNT7BWNT2FGF2IL6IL6RBMP4OP-9 coculture MesodermalGABA neuronsEpidermisPA6/MS-5cocultureCortical layersOptic cupNeural progenitorsDA neuronsSort P75+, HNK1Cortical neuronsKeratinocytesAdherent cultureOligodendrocytesNueral retina(NR)Retinal Pigment epithelium (RPE)Neural crest stem cellsSpinal motor neuronsPhotoreceptorsculture on artificialmatrixUtriclestromacultureKSR or adherantcultureRetinal pigment epitheliumOctic hair cells3D matrigel cultureNeuroectodermAstrocytesSFEBq cultureEctodermFGF2INHBASHHNiacinamideTaurineIGF1FGF8WNT1ALKVitamin ALEFTY1SHHBMP4CNTFNaltrexoneFGF2NODALDKK1PDGFARetinoic acidEGFFGF1FGF2NOGVitamin ASHHSHHINHBAINHBABMP4EctodermalIGF143TPOEPOFLT3LGFGF2


Description

This pathway provides an overview of the directed differentiation molecules used to induce early and derivative cell lineages from human pluripotent stem cells. This overview differentiates between the three primary germ cell layers (ectoderm-outer layer, endoderm-inner layer, mesoderm-middle layer), which are formed in the earliest state of embryonic development and give rise to different tissue types. The initial version of this pathway is a direct adaptation of the SnapShot "Directed Differentiation of Pluripotent Stem Cells" pathway authored by Luis A. Williams, Brandi N. Davis-Dusenbery, and Kevin C. Eggan, HHMI, Harvard University, Cell 149, May 25, 2012 Elsevier Inc. DOI 10.1016/j.cell.2012.05.015. http://download.cell.com/pdf/PIIS0092867412005946.pdf. This adaptation was generated by Meenakshi Venkatasubramanian and Krithika Ramasamy Subramanian at Cincinnati Children's Hospital in the laboratory of Nathan Salomonis. Proteins on this pathway have targeted assays available via the CPTAC Assay Portal

Try the New WikiPathways

View approved pathways at the new wikipathways.org.

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. David S, Kroner A; ''Repertoire of microglial and macrophage responses after spinal cord injury.''; Nat Rev Neurosci, 2011 PubMed Europe PMC Scholia
  2. Farooque M, Isaksson J, Olsson Y; ''Improved recovery after spinal cord trauma in ICAM-1 and P-selectin knockout mice.''; Neuroreport, 1999 PubMed Europe PMC Scholia
  3. Zhang S, Huan W, Wei H, Shi J, Fan J, Zhao J, Shen A, Teng H; ''FOXO3a/p27kip1 expression and essential role after acute spinal cord injury in adult rat.''; J Cell Biochem, 2013 PubMed Europe PMC Scholia
  4. Menet V, Prieto M, Privat A, Gimأ©nez y Ribotta M; ''''; , PubMed Europe PMC Scholia
  5. Saganovأ، K, Gأ،lik J, Blaإ،ko J, Korimovأ، A, Raؤچekovأ، E, Vanickأ½ I; ''''; , PubMed Europe PMC Scholia
  6. Resnick DK, Graham SH, Dixon CE, Marion DW; ''Role of cyclooxygenase 2 in acute spinal cord injury.''; J Neurotrauma, 1998 PubMed Europe PMC Scholia
  7. Adjan VV, Hauser KF, Bakalkin G, Yakovleva T, Gharibyan A, Scheff SW, Knapp PE; ''Caspase-3 activity is reduced after spinal cord injury in mice lacking dynorphin: differential effects on glia and neurons.''; Neuroscience, 2007 PubMed Europe PMC Scholia
  8. Woods AS, Kaminski R, Oz M, Wang Y, Hauser K, Goody R, Wang HY, Jackson SN, Zeitz P, Zeitz KP, Zolkowska D, Schepers R, Nold M, Danielson J, Grأ¤slund A, Vukojevic V, Bakalkin G, Basbaum A, Shippenberg T; ''Decoy peptides that bind dynorphin noncovalently prevent NMDA receptor-mediated neurotoxicity.''; J Proteome Res, 2006 PubMed Europe PMC Scholia
  9. Saiwai H, Ohkawa Y, Yamada H, Kumamaru H, Harada A, Okano H, Yokomizo T, Iwamoto Y, Okada S; ''The LTB4-BLT1 axis mediates neutrophil infiltration and secondary injury in experimental spinal cord injury.''; Am J Pathol, 2010 PubMed Europe PMC Scholia
  10. Chu GK, Yu W, Fehlings MG; ''The p75 neurotrophin receptor is essential for neuronal cell survival and improvement of functional recovery after spinal cord injury.''; Neuroscience, 2007 PubMed Europe PMC Scholia
  11. Saadoun S, Bell BA, Verkman AS, Papadopoulos MC; ''''; , PubMed Europe PMC Scholia
  12. Cafferty WB, Duffy P, Huebner E, Strittmatter SM; ''''; , PubMed Europe PMC Scholia
  13. Wu J, Stoica BA, Faden AI; ''Cell cycle activation and spinal cord injury.''; Neurotherapeutics, 2011 PubMed Europe PMC Scholia
  14. Kitayama M, Ueno M, Itakura T, Yamashita T; ''Activated microglia inhibit axonal growth through RGMa.''; PLoS One, 2011 PubMed Europe PMC Scholia
  15. DAGCI T, ARMAGAN G, KONYALIOGLU S, YALCIN A; ''Alterations in the expression of the apurinic/apyrimidinic endonuclease-1/redox factor-1 (APE/ref-1) and DNA damage in the caudal region of acute and chronic spinal cord injured rats treated by embryonic neural stem cells.''; Physiol Res, 2009 PubMed Europe PMC Scholia
  16. Tonai T, Shiba K, Taketani Y, Ohmoto Y, Murata K, Muraguchi M, Ohsaki H, Takeda E, Nishisho T; ''A neutrophil elastase inhibitor (ONO-5046) reduces neurologic damage after spinal cord injury in rats.''; J Neurochem, 2001 PubMed Europe PMC Scholia
  17. ''''; , PubMed Europe PMC Scholia
  18. Jain A, McKeon RJ, Brady-Kalnay SM, Bellamkonda RV; ''Sustained delivery of activated Rho GTPases and BDNF promotes axon growth in CSPG-rich regions following spinal cord injury.''; PLoS One, 2011 PubMed Europe PMC Scholia
  19. Di Giovanni S, Knoblach SM, Brandoli C, Aden SA, Hoffman EP, Faden AI; ''''; , PubMed Europe PMC Scholia
  20. Hashimoto M, Ito T, Fukumitsu H, Nomoto H, Furukawa Y, Furukawa S; ''Stimulation of production of glial cell line-derived neurotrophic factor and nitric oxide by lipopolysaccharide with different dose-responsiveness in cultured rat macrophages.''; Biomed Res, 2005 PubMed Europe PMC Scholia
  21. ''''; , PubMed Europe PMC Scholia
  22. Erschbamer M, Pernold K, Olson L; ''Inhibiting epidermal growth factor receptor improves structural, locomotor, sensory, and bladder recovery from experimental spinal cord injury.''; J Neurosci, 2007 PubMed Europe PMC Scholia
  23. Yu CG, Yezierski RP, Joshi A, Raza K, Li Y, Geddes JW; ''''; , PubMed Europe PMC Scholia
  24. Lavezzi AM, Casale V, Oneda R, Weese-Mayer DE, Matturri L; ''Sudden Infant Death Syndrome and Sudden Intrauterine Unexplained Death: Correlation Between Hypoplasia of Raphأƒآ¢أ‚آˆأ‚آڑأƒآکأ‚آ¬أƒآ¯أ‚آ؟أ‚آ½أƒآژأ‚آ©أƒآ¢أ‚آˆأ‚آڑأƒآکأ‚آ¬أƒآ¯أ‚آ؟أ‚آ½أƒآژأ‚آ©أƒآژأ‚آ© Nuclei and Serotonin Transporter Gene Promoter Polymorphism.''; Pediatr Res, 2009 PubMed Europe PMC Scholia
  25. Schwab JM, Frei E, Klusman I, Schnell L, Schwab ME, Schluesener HJ; ''AIF-1 expression defines a proliferating and alert microglial/macrophage phenotype following spinal cord injury in rats.''; J Neuroimmunol, 2001 PubMed Europe PMC Scholia
  26. ''''; , PubMed Europe PMC Scholia
  27. Myers SA, DeVries WH, Andres KR, Gruenthal MJ, Benton RL, Hoying JB, Hagg T, Whittemore SR; ''CD47 knockout mice exhibit improved recovery from spinal cord injury.''; Neurobiol Dis, 2011 PubMed Europe PMC Scholia
  28. Wang YF, Fan ZK, Cao Y, Yu DS, Zhang YQ, Wang YS; ''2-Methoxyestradiol inhibits the up-regulation of AQP4 and AQP1 expression after spinal cord injury.''; Brain Res, 2011 PubMed Europe PMC Scholia
  29. ''''; , PubMed Europe PMC Scholia
  30. Lee SM, Rosen S, Weinstein P, van Rooijen N, Noble-Haeusslein LJ; ''Prevention of both neutrophil and monocyte recruitment promotes recovery after spinal cord injury.''; J Neurotrauma, 2011 PubMed Europe PMC Scholia
  31. Lأ³pez-Vales R, Ghasemlou N, Redensek A, Kerr BJ, Barbayianni E, Antonopoulou G, Baskakis C, Rathore KI, Constantinou-Kokotou V, Stephens D, Shimizu T, Dennis EA, Kokotos G, David S; ''Phospholipase A2 superfamily members play divergent roles after spinal cord injury.''; FASEB J, 2011 PubMed Europe PMC Scholia
  32. Fabes J, Anderson P, Yأ،أ±ez-Muأ±oz RJ, Thrasher A, Brennan C, Bolsover S; ''''; , PubMed Europe PMC Scholia
  33. Im YB, Jee MK, Choi JI, Cho HT, Kwon OH, Kang SK; ''''; , PubMed Europe PMC Scholia
  34. Huang C, Han X, Li X, Lam E, Peng W, Lou N, Torres A, Yang M, Garre JM, Tian GF, Bennett MV, Nedergaard M, Takano T; ''Critical role of connexin 43 in secondary expansion of traumatic spinal cord injury.''; J Neurosci, 2012 PubMed Europe PMC Scholia
  35. Terayama R, Bando Y, Murakami K, Kato K, Kishibe M, Yoshida S; ''Neuropsin promotes oligodendrocyte death, demyelination and axonal degeneration after spinal cord injury.''; Neuroscience, 2007 PubMed Europe PMC Scholia
  36. Floriddia EM, Rathore KI, Tedeschi A, Quadrato G, Wuttke A, Lueckmann JM, Kigerl KA, Popovich PG, Di Giovanni S; ''''; , PubMed Europe PMC Scholia
  37. Fernأ،ndez-Martos CM, Gonzأ،lez P, Rodriguez FJ; ''Acute leptin treatment enhances functional recovery after spinal cord injury.''; PLoS One, 2012 PubMed Europe PMC Scholia
  38. Chalimoniuk M, King-Pospisil K, Metz CN, Toborek M; ''Macrophage migration inhibitory factor induces cell death and decreases neuronal nitric oxide expression in spinal cord neurons.''; Neuroscience, 2006 PubMed Europe PMC Scholia
  39. Lee JK, Geoffroy CG, Chan AF, Tolentino KE, Crawford MJ, Leal MA, Kang B, Zheng B; ''''; , PubMed Europe PMC Scholia
  40. Saganovأ، K, Orendأ،covأ، J, Sulla I Jr, Filipcأ­k P, Cأ­zkovأ، D, Vanickأ½ I; ''''; , PubMed Europe PMC Scholia
  41. Pajoohesh-Ganji A, Knoblach SM, Faden AI, Byrnes KR; ''Characterization of inflammatory gene expression and galectin-3 function after spinal cord injury in mice.''; Brain Res, 2012 PubMed Europe PMC Scholia
  42. Liu NK, Zhang YP, Han S, Pei J, Xu LY, Lu PH, Shields CB, Xu XM; ''Annexin A1 reduces inflammatory reaction and tissue damage through inhibition of phospholipase A2 activation in adult rats following spinal cord injury.''; J Neuropathol Exp Neurol, 2007 PubMed Europe PMC Scholia
  43. Chou ST, Byrska-Bishop M, Tober JM, Yao Y, Vandorn D, Opalinska JB, Mills JA, Choi JK, Speck NA, Gadue P, Hardison RC, Nemiroff RL, French DL, Weiss MJ; ''Trisomy 21-associated defects in human primitive hematopoiesis revealed through induced pluripotent stem cells.''; Proc Natl Acad Sci U S A, 2012 PubMed Europe PMC Scholia
  44. Sharma HS; ''''; , PubMed Europe PMC Scholia
  45. Puschmann TB, Turnley AM; ''''; , PubMed Europe PMC Scholia
  46. Genovese T, Mazzon E, Crisafulli C, Di Paola R, Muiأ  C, Esposito E, Bramanti P, Cuzzocrea S; ''TNF-alpha blockage in a mouse model of SCI: evidence for improved outcome.''; Shock, 2008 PubMed Europe PMC Scholia
  47. Poulain M, Ober EA; ''Interplay between Wnt2 and Wnt2bb controls multiple steps of early foregut-derived organ development.''; Development, 2011 PubMed Europe PMC Scholia
  48. Eng LF, Ghirnikar RS, Lee YL; ''Glial fibrillary acidic protein: GFAP-thirty-one years (1969-2000).''; Neurochem Res, 2000 PubMed Europe PMC Scholia
  49. Tohda C, Kuboyama T; ''Current and future therapeutic strategies for functional repair of spinal cord injury.''; Pharmacol Ther, 2011 PubMed Europe PMC Scholia
  50. McKillop WM, Dragan M, Schedl A, Brown A; ''''; , PubMed Europe PMC Scholia
  51. Pineau I, Sun L, Bastien D, Lacroix S; ''Astrocytes initiate inflammation in the injured mouse spinal cord by promoting the entry of neutrophils and inflammatory monocytes in an IL-1 receptor/MyD88-dependent fashion.''; Brain Behav Immun, 2010 PubMed Europe PMC Scholia
  52. Shim SO, Cafferty WB, Schmidt EC, Kim BG, Fujisawa H, Strittmatter SM; ''PlexinA2 limits recovery from corticospinal axotomy by mediating oligodendrocyte-derived Sema6A growth inhibition.''; Mol Cell Neurosci, 2012 PubMed Europe PMC Scholia
  53. Dekaban GA, Thawer S; ''Pathogenic antibodies are active participants in spinal cord injury.''; J Clin Invest, 2009 PubMed Europe PMC Scholia
  54. Pajoohesh-Ganji A, Knoblach SM, Faden AI, Byrnes KR; ''Characterization of inflammatory gene expression and galectin-3 function after spinal cord injury in mice.''; Brain Res, 2012 PubMed Europe PMC Scholia
  55. Tian DS, Dong Q, Pan DJ, He Y, Yu ZY, Xie MJ, Wang W; ''''; , PubMed Europe PMC Scholia

History

View all...
CompareRevisionActionTimeUserComment
134324view12:02, 20 July 2024EweitzOntology Term : 'myoblast' added !
134323view11:57, 20 July 2024EweitzOntology Term : 'neural stem cell' added !
134322view11:57, 20 July 2024EweitzOntology Term : 'oligodendrocyte' added !
134321view11:29, 20 July 2024EweitzOntology Term : 'spinal cord motor neuron' added !
134320view11:28, 20 July 2024EweitzOntology Term : 'keratinocyte' added !
134258view05:01, 18 July 2024EgonwRemoved template comments
120814view15:12, 11 January 2022SusanOntology Term : 'growth factor signaling pathway' added !
117095view11:29, 17 May 2021EweitzModified title
107975view13:41, 18 November 2019Fehrhartconnecting unconnected interactions
107905view22:12, 9 November 2019DdiglesModified description
107833view16:29, 6 November 2019DeSlModified description
107832view16:25, 6 November 2019DeSlModified description
107829view11:16, 6 November 2019DeSlChnaged 13-cis-retinol (Vit A) to all-trans-retinol (Vit. A) for linkouts.
107828view11:11, 6 November 2019DeSlUpdated Vit. A ID again
107827view10:42, 6 November 2019DeSlUpdated Vitamin A ID
106388view21:25, 28 August 2019KhanspersModified description
106210view12:10, 16 August 2019MaintBotHMDB identifier normalization
105570view06:26, 9 August 2019KhanspersModified description
102217view20:41, 11 December 2018Khanspersfixed interactions, adjusted layout and node sizing, grouped objects, added interactions and anchors
102214view00:31, 11 December 2018Khansperscreating groups and connecting interactions
89940view13:53, 6 October 2016EgonwModified description
87893view12:50, 25 July 2016SusanOntology Term : 'regulatory pathway' added !
80009view13:05, 30 April 2015Zaricorrected Ensembl Id for NTF4
78558view10:31, 7 January 2015MaintBotadded missing graphIds
77643view13:55, 1 October 2014EgonwFixed three PubChem CIDs which incorrectly included the "CID" string.
77642view13:53, 1 October 2014EgonwReplace the CAS numbers (we don't generally have mappings) with the PubChem CIDs provided in the comment.
77579view21:46, 29 September 2014AlexanderPicoFixed "Ensembl Human" to "Ensembl"
77578view21:41, 29 September 2014AlexanderPicoAdded Hematopoietic factors from Chou (2012) PNAS
77570view18:21, 28 September 2014AlexanderPicoFixed SCFD1 to KITLG (SCF)
77488view17:30, 16 September 2014KhanspersOntology Term : 'stem cell' added !
77473view00:32, 14 September 2014NsalomonisModified description
77472view00:22, 14 September 2014NsalomonisNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
A-83-01Metabolite16218924 (PubChem-compound)
ALKGeneProductENSG00000171094 (Ensembl)
Ascorbic acidMetaboliteHMDB0000044 (HMDB)
BMP4GeneProduct652 (Entrez Gene)
BMP4GeneProductENSG00000125378 (Ensembl)
Beta-Glycerophosphoric acidMetaboliteHMDB0002520 (HMDB)
CNTFGeneProductENSG00000242689 (Ensembl)
CSF1GeneProductENSG00000184371 (Ensembl)
CSF1RGeneProductENSG00000182578 (Ensembl)
CXCR1GeneProductENSG00000163464 (Ensembl)
CyclopamineMetabolite442972 (PubChem-compound)
DAPTMetabolite5311272 (PubChem-compound) http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?cid=5311272&loc=ec_rcs
DKK1GeneProductENSG00000107984 (Ensembl)
DexamethasoneMetaboliteHMDB0015364 (HMDB)
EGFGeneProductENSG00000138798 (Ensembl)
EPOGeneProductENSG00000130427 (Ensembl)
FGF10GeneProductENSG00000070193 (Ensembl)
FGF1GeneProductENSG00000113578 (Ensembl)
FGF2GeneProductENSG00000138685 (Ensembl)
FGF4GeneProductENSG00000075388 (Ensembl)
FGF8GeneProductENSG00000107831 (Ensembl)
FLT3LGGeneProductENSG00000090554 (Ensembl)
FSTGeneProductENSG00000134363 (Ensembl)
GDF5GeneProductENSG00000125965 (Ensembl)
HGFGeneProductENSG00000019991 (Ensembl)
IGF1GeneProductENSG00000017427 (Ensembl)
IL11GeneProductENSG00000095752 (Ensembl)
IL3GeneProductENSG00000164399 (Ensembl)
IL6GeneProductENSG00000136244 (Ensembl)
IL6RGeneProductENSG00000160712 (Ensembl)
INHBAGeneProduct3624 (Entrez Gene)
INHBAGeneProductENSG00000122641 (Ensembl)
INSGeneProductENSG00000254647 (Ensembl)
KITGeneProductENSG00000157404 (Ensembl)
LEFTY1GeneProductENSG00000243709 (Ensembl)
NODALGeneProductENSG00000156574 (Ensembl)
NOGGeneProductENSG00000183691 (Ensembl)
NOTCH1GeneProduct4851 (Entrez Gene)
NT5EGeneProductENSG00000135318 (Ensembl)
NTF4GeneProductENSG00000225950 (Ensembl)
NaltrexoneMetaboliteHMDB0014842 (HMDB)
NiacinamideMetaboliteHMDB0001406 (HMDB)
PDGFAGeneProductENSG00000197461 (Ensembl)
PDGFBGeneProductENSG00000100311 (Ensembl)
RAMetaboliteHMDB0001852 (HMDB)
Retinoic acidMetaboliteHMDB0001852 (HMDB)
SB431542Metabolite4521392 (PubChem-compound) http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?cid=4521392
SCFGeneProductENSG00000049130 (Ensembl)
SHHGeneProductENSG00000164690 (Ensembl)
SeleniumMetaboliteHMDB0001349 (HMDB)
TFGeneProductENSG00000091513 (Ensembl)
TGFB1GeneProduct7040 (Entrez Gene)
TGFB3GeneProductENSG00000119699 (Ensembl)
TNFSF11GeneProductENSG00000120659 (Ensembl)
TPOGeneProductENSG00000115705 (Ensembl)
TaurineMetaboliteHMDB0000251 (HMDB)
VEGFAGeneProductENSG00000112715 (Ensembl)
Vitamin AMetaboliteQ424976 (Wikidata)
WNT1GeneProductENSG00000125084 (Ensembl)
WNT2GeneProduct7472 (Entrez Gene)
WNT2BGeneProduct7482 (Entrez Gene)
WNT3AGeneProductENSG00000154342 (Ensembl)
WNT5AGeneProduct7474 (Entrez Gene)
WNT7BGeneProduct7477 (Entrez Gene)

Annotated Interactions

No annotated interactions

Personal tools