Blood group systems biosynthesis (Homo sapiens)

From WikiPathways

Jump to: navigation, search
7, 11, 15, 20, 24...4, 27, 40, 444373422818, 35, 41, 49, 506, 9, 12, 14, 21...1, 19, 436, 9, 12, 14, 21...40, 442, 22, 23, 4122, 4710, 13, 16, 33, 3737, 386, 9, 12, 14, 21...25, 28, 365, 27, 4240, 443, 29, 4617, 226, 9, 12, 14, 21...Golgi lumennucleoluscytosolUDP-GalLewis antigensFUT3,5,6,7Rhesus C/E proteindsLeAST3GAL3 LeY LeB FUT2FUT3 sLeX Lewis antigensGlcNAc-β1,3-Gal-RType 2 MSGGLeYGDPMn2+ ABO-A:Mn2+sLeX UDP-GalFUT4 ST6GALNAC6sABO-A:Mn2+CMP-Neu5AcB3GALT5 UDP-GalNAcUDPUDPLeAH antigen-secABO-A ST3GAL4 Sda FUT5 UDP-GalFUT5 A antigen-RBCFUT1GDP-FucsABO-B CMPsABO-B:Mn2+B antigen-RBCFUT6 ABO-B:Mn2+FUT11 RHD geneLeY Type 1 chainRHCE geneSdaSda GDP-FucST3GAL3ST3GAL6 GDPsLeXdsLeA LeA Type 1 DSGGLeB dsLeA B3GALT2 H antigen-RBCB3GALTsB antigen-secsLeA ABO-B GDP-FucFUT3sLeA Type 2 chainsABO-A H antigen-secUDPGDP-FucUDPFUT10 GDPFUT3Mn2+ PALM-C-Rhesus DproteinFUT2GDP-FucLeXLeX FUT4,5,9(10,11)UDP-GalNAcB4GALNT2ST3GAL3,4,6Mn2+ CMPType 1 MSGGLeA UDP-GalNAcGDPB3GALT4 GDPFUT9 LeBFUT7 A antigen-secB3GALT1 sLeAMn2+ LeX 1414


Description

The association between blood type and disease has been studied since the beginning of the 20th Century (Anstee 2010, Ewald & Sumner 2016). Landsteiner's discovery of blood groups in 1900 was based on agglutination patterns of red blood cells when blood types from different donors were mixed (Landsteiner 1931, Owen 2000, Tan & Graham 2013). His work is the basis of routine compatibility testing and transfusion practices today. The immune system of patients receiving blood transfusions will attack any donor red blood cells that contain antigens that differ from their self-antigens. Therefore, matching blood types is essential for safe blood transfusions. Landsteiner's classification of the ABO blood groups confirmed that antigens were inherited characteristics. In the 1940s, it was established that the specificity of blood group antigens was determined by their unique oligosaccharide structures. Since then, exponential advances in technology have resulted in the identification of over 300 blood group antigens, classified into more than 35 blood group systems by the International Society of Blood Transfusion (ISBT) (Storry et al. 2016).

Blood group antigens comprise either a protein portion or oligosaccharide sequence attached on a glycolipid or glycoprotein. The addition of one or more specific sugar molecules to this oligosaccharide sequence at specific positions by a variety of glycosyltransferases results in the formation of mature blood group antigens. The genes that code for glycosytransferases can contain genetic changes that produce antigenic differences, resulting in new antigens or loss of expression. Blood group antigens are found on red blood cells (RBCs), platelets, leukocytes, and plasma proteins and also exist in soluble form in bodily secretions such as breast milk, seminal fluid, saliva, sweat, gastric secretions and urine. Blood groups are implicated in many diseases such as those related to malignancy (Rummel & Ellsworth 2016), the cardiovascular system (Liumbruno & Franchini 2013), metabolism (Meo et al. 2016, Ewald & Sumner 2016) and infection (Rios & Bianco 2000, McCullough 2014). The most important and best-studied blood groups are the ABO, Lewis and Rhesus systems. The biosynthesis of the antigens in these systems is described in this section. View original pathway at Reactome.

Comments

Reactome-Converter 
Pathway is converted from Reactome ID: 9033658
Reactome-version 
Reactome version: 75
Reactome Author 
Reactome Author: Jassal, Bijay

Try the New WikiPathways

View approved pathways at the new wikipathways.org.

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Kitagawa H, Paulson JC.; ''Cloning of a novel alpha 2,3-sialyltransferase that sialylates glycoprotein and glycolipid carbohydrate groups.''; PubMed Europe PMC Scholia
  2. Natsuka S, Gersten KM, Zenita K, Kannagi R, Lowe JB.; ''Molecular cloning of a cDNA encoding a novel human leukocyte alpha-1,3-fucosyltransferase capable of synthesizing the sialyl Lewis x determinant.''; PubMed Europe PMC Scholia
  3. Amado M, Almeida R, Carneiro F, Levery SB, Holmes EH, Nomoto M, Hollingsworth MA, Hassan H, Schwientek T, Nielsen PA, Bennett EP, Clausen H.; ''A family of human beta3-galactosyltransferases. Characterization of four members of a UDP-galactose:beta-N-acetyl-glucosamine/beta-nacetyl-galactosamine beta-1,3-galactosyltransferase family.''; PubMed Europe PMC Scholia
  4. Kelly RJ, Ernst LK, Larsen RD, Bryant JG, Robinson JS, Lowe JB.; ''Molecular basis for H blood group deficiency in Bombay (Oh) and para-Bombay individuals.''; PubMed Europe PMC Scholia
  5. Larsen RD, Ernst LK, Nair RP, Lowe JB.; ''Molecular cloning, sequence, and expression of a human GDP-L-fucose:beta-D-galactoside 2-alpha-L-fucosyltransferase cDNA that can form the H blood group antigen.''; PubMed Europe PMC Scholia
  6. Seto NO, Compston CA, Evans SV, Bundle DR, Narang SA, Palcic MM.; ''Donor substrate specificity of recombinant human blood group A, B and hybrid A/B glycosyltransferases expressed in Escherichia coli.''; PubMed Europe PMC Scholia
  7. Ewald DR, Sumner SC.; ''Blood type biochemistry and human disease.''; PubMed Europe PMC Scholia
  8. Green C.; ''The ABO, Lewis and related blood group antigens; a review of structure and biosynthesis.''; PubMed Europe PMC Scholia
  9. Alfaro JA, Zheng RB, Persson M, Letts JA, Polakowski R, Bai Y, Borisova SN, Seto NO, Lowary TL, Palcic MM, Evans SV.; ''ABO(H) blood group A and B glycosyltransferases recognize substrate via specific conformational changes.''; PubMed Europe PMC Scholia
  10. de Vetten MP, Agre P.; ''The Rh polypeptide is a major fatty acid-acylated erythrocyte membrane protein.''; PubMed Europe PMC Scholia
  11. McCullough J.; ''RBCs as targets of infection.''; PubMed Europe PMC Scholia
  12. Patenaude SI, Seto NO, Borisova SN, Szpacenko A, Marcus SL, Palcic MM, Evans SV.; ''The structural basis for specificity in human ABO(H) blood group biosynthesis.''; PubMed Europe PMC Scholia
  13. Saboori AM, Smith BL, Agre P.; ''Polymorphism in the Mr 32,000 Rh protein purified from Rh(D)-positive and -negative erythrocytes.''; PubMed Europe PMC Scholia
  14. Yamamoto F, Clausen H, White T, Marken J, Hakomori S.; ''Molecular genetic basis of the histo-blood group ABO system.''; PubMed Europe PMC Scholia
  15. Tan SY, Graham C.; ''Karl Landsteiner (1868-1943): originator of ABO blood classification.''; PubMed Europe PMC Scholia
  16. Avent ND, Ridgwell K, Mawby WJ, Tanner MJ, Anstee DJ, Kumpel B.; ''Protein-sequence studies on Rh-related polypeptides suggest the presence of at least two groups of proteins which associate in the human red-cell membrane.''; PubMed Europe PMC Scholia
  17. Magnani JL.; ''The discovery, biology, and drug development of sialyl Lea and sialyl Lex.''; PubMed Europe PMC Scholia
  18. Toivonen S, Nishihara S, Narimatsu H, Renkonen O, Renkonen R.; ''Fuc-TIX: a versatile alpha1,3-fucosyltransferase with a distinct acceptor- and site-specificity profile.''; PubMed Europe PMC Scholia
  19. Okajima T, Fukumoto S, Miyazaki H, Ishida H, Kiso M, Furukawa K, Urano T, Furukawa K.; ''Molecular cloning of a novel alpha2,3-sialyltransferase (ST3Gal VI) that sialylates type II lactosamine structures on glycoproteins and glycolipids.''; PubMed Europe PMC Scholia
  20. Meo SA, Rouq FA, Suraya F, Zaidi SZ.; ''Association of ABO and Rh blood groups with type 2 diabetes mellitus.''; PubMed Europe PMC Scholia
  21. Persson M, Letts JA, Hosseini-Maaf B, Borisova SN, Palcic MM, Evans SV, Olsson ML.; ''Structural effects of naturally occurring human blood group B galactosyltransferase mutations adjacent to the DXD motif.''; PubMed Europe PMC Scholia
  22. Kukowska-Latallo JF, Larsen RD, Nair RP, Lowe JB.; ''A cloned human cDNA determines expression of a mouse stage-specific embryonic antigen and the Lewis blood group alpha(1,3/1,4)fucosyltransferase.''; PubMed Europe PMC Scholia
  23. Koszdin KL, Bowen BR.; ''The cloning and expression of a human alpha-1,3 fucosyltransferase capable of forming the E-selectin ligand.''; PubMed Europe PMC Scholia
  24. Anstee DJ.; ''The relationship between blood groups and disease.''; PubMed Europe PMC Scholia
  25. Groux-Degroote S, Wavelet C, Krzewinski-Recchi MA, Portier L, Mortuaire M, Mihalache A, Trinchera M, Delannoy P, Malagolini N, Chiricolo M, Dall'Olio F, Harduin-Lepers A.; ''B4GALNT2 gene expression controls the biosynthesis of Sda and sialyl Lewis X antigens in healthy and cancer human gastrointestinal tract.''; PubMed Europe PMC Scholia
  26. Rummel SK, Ellsworth RE.; ''The role of the histoblood ABO group in cancer.''; PubMed Europe PMC Scholia
  27. Koda Y, Soejima M, Johnson PH, Smart E, Kimura H.; ''Missense mutation of FUT1 and deletion of FUT2 are responsible for Indian Bombay phenotype of ABO blood group system.''; PubMed Europe PMC Scholia
  28. Montiel MD, Krzewinski-Recchi MA, Delannoy P, Harduin-Lepers A.; ''Molecular cloning, gene organization and expression of the human UDP-GalNAc:Neu5Acalpha2-3Galbeta-R beta1,4-N-acetylgalactosaminyltransferase responsible for the biosynthesis of the blood group Sda/Cad antigen: evidence for an unusual extended cytoplasmic domain.''; PubMed Europe PMC Scholia
  29. Hennet T.; ''The galactosyltransferase family.''; PubMed Europe PMC Scholia
  30. Rios M, Bianco C.; ''The role of blood group antigens in infectious diseases.''; PubMed Europe PMC Scholia
  31. Yamamoto F, McNeill PD.; ''Amino acid residue at codon 268 determines both activity and nucleotide-sugar donor substrate specificity of human histo-blood group A and B transferases. In vitro mutagenesis study.''; PubMed Europe PMC Scholia
  32. Storry JR, Castilho L, Chen Q, Daniels G, Denomme G, Flegel WA, Gassner C, de Haas M, Hyland C, Keller M, Lomas-Francis C, Moulds JM, Nogues N, Olsson ML, Peyrard T, van der Schoot CE, Tani Y, Thornton N, Wagner F, Wendel S, Westhoff C, Yahalom V.; ''International society of blood transfusion working party on red cell immunogenetics and terminology: report of the Seoul and London meetings.''; PubMed Europe PMC Scholia
  33. Hartel-Schenk S, Agre P.; ''Mammalian red cell membrane Rh polypeptides are selectively palmitoylated subunits of a macromolecular complex.''; PubMed Europe PMC Scholia
  34. Senda M, Ito A, Tsuchida A, Hagiwara T, Kaneda T, Nakamura Y, Kasama K, Kiso M, Yoshikawa K, Katagiri Y, Ono Y, Ogiso M, Urano T, Furukawa K, Oshima S, Furukawa K.; ''Identification and expression of a sialyltransferase responsible for the synthesis of disialylgalactosylgloboside in normal and malignant kidney cells: downregulation of ST6GalNAc VI in renal cancers.''; PubMed Europe PMC Scholia
  35. Lowe JB, Kukowska-Latallo JF, Nair RP, Larsen RD, Marks RM, Macher BA, Kelly RJ, Ernst LK.; ''Molecular cloning of a human fucosyltransferase gene that determines expression of the Lewis x and VIM-2 epitopes but not ELAM-1-dependent cell adhesion.''; PubMed Europe PMC Scholia
  36. Lo Presti L, Cabuy E, Chiricolo M, Dall'Olio F.; ''Molecular cloning of the human beta1,4 N-acetylgalactosaminyltransferase responsible for the biosynthesis of the Sd(a) histo-blood group antigen: the sequence predicts a very long cytoplasmic domain.''; PubMed Europe PMC Scholia
  37. Bloy C, Blanchard D, Dahr W, Beyreuther K, Salmon C, Cartron JP.; ''Determination of the N-terminal sequence of human red cell Rh(D) polypeptide and demonstration that the Rh(D), (c), and (E) antigens are carried by distinct polypeptide chains.''; PubMed Europe PMC Scholia
  38. Le Van Kim C, Chérif-Zahar B, Raynal V, Mouro I, Lopez M, Cartron JP, Colin Y.; ''Multiple Rh messenger RNA isoforms are produced by alternative splicing.''; PubMed Europe PMC Scholia
  39. Owen R.; ''Karl Landsteiner and the first human marker locus.''; PubMed Europe PMC Scholia
  40. Koda Y, Soejima M, Wang B, Kimura H.; ''Structure and expression of the gene encoding secretor-type galactoside 2-alpha-L-fucosyltransferase (FUT2).''; PubMed Europe PMC Scholia
  41. Weston BW, Nair RP, Larsen RD, Lowe JB.; ''Isolation of a novel human alpha (1,3)fucosyltransferase gene and molecular comparison to the human Lewis blood group alpha (1,3/1,4)fucosyltransferase gene. Syntenic, homologous, nonallelic genes encoding enzymes with distinct acceptor substrate specificities.''; PubMed Europe PMC Scholia
  42. Kaneko M, Nishihara S, Shinya N, Kudo T, Iwasaki H, Seno T, Okubo Y, Narimatsu H.; ''Wide variety of point mutations in the H gene of Bombay and para-Bombay individuals that inactivate H enzyme.''; PubMed Europe PMC Scholia
  43. Kitagawa H, Paulson JC.; ''Cloning and expression of human Gal beta 1,3(4)GlcNAc alpha 2,3-sialyltransferase.''; PubMed Europe PMC Scholia
  44. Kelly RJ, Rouquier S, Giorgi D, Lennon GG, Lowe JB.; ''Sequence and expression of a candidate for the human Secretor blood group alpha(1,2)fucosyltransferase gene (FUT2). Homozygosity for an enzyme-inactivating nonsense mutation commonly correlates with the non-secretor phenotype.''; PubMed Europe PMC Scholia
  45. Liumbruno GM, Franchini M.; ''Beyond immunohaematology: the role of the ABO blood group in human diseases.''; PubMed Europe PMC Scholia
  46. Isshiki S, Togayachi A, Kudo T, Nishihara S, Watanabe M, Kubota T, Kitajima M, Shiraishi N, Sasaki K, Andoh T, Narimatsu H.; ''Cloning, expression, and characterization of a novel UDP-galactose:beta-N-acetylglucosamine beta1,3-galactosyltransferase (beta3Gal-T5) responsible for synthesis of type 1 chain in colorectal and pancreatic epithelia and tumor cells derived therefrom.''; PubMed Europe PMC Scholia
  47. Nishihara S, Yazawa S, Iwasaki H, Nakazato M, Kudo T, Ando T, Narimatsu H.; ''Alpha (1,3/1,4)fucosyltransferase (FucT-III) gene is inactivated by a single amino acid substitution in Lewis histo-blood type negative individuals.''; PubMed Europe PMC Scholia
  48. Landsteiner K.; ''INDIVIDUAL DIFFERENCES IN HUMAN BLOOD.''; PubMed Europe PMC Scholia
  49. Goelz SE, Hession C, Goff D, Griffiths B, Tizard R, Newman B, Chi-Rosso G, Lobb R.; ''ELFT: a gene that directs the expression of an ELAM-1 ligand.''; PubMed Europe PMC Scholia
  50. Mollicone R, Moore SE, Bovin N, Garcia-Rosasco M, Candelier JJ, Martinez-Duncker I, Oriol R.; ''Activity, splice variants, conserved peptide motifs, and phylogeny of two new alpha1,3-fucosyltransferase families (FUT10 and FUT11).''; PubMed Europe PMC Scholia

History

CompareRevisionActionTimeUserComment
114897view16:41, 25 January 2021ReactomeTeamReactome version 75
113343view11:41, 2 November 2020ReactomeTeamReactome version 74
112815view18:22, 9 October 2020DeSlOntology Term : 'homeostasis pathway' added !
112763view16:16, 9 October 2020ReactomeTeamNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
A antigen-RBCMetaboliteCHEBI:139352 (ChEBI)
A antigen-secMetaboliteCHEBI:140186 (ChEBI)
ABO-A ProteinP16442 (Uniprot-TrEMBL)
ABO-A:Mn2+ComplexR-HSA-9034067 (Reactome)
ABO-B ProteinP16442 (Uniprot-TrEMBL)
ABO-B:Mn2+ComplexR-HSA-9034077 (Reactome)
B antigen-RBCMetaboliteCHEBI:139353 (ChEBI)
B antigen-secMetaboliteCHEBI:140187 (ChEBI)
B3GALT1 ProteinQ9Y5Z6 (Uniprot-TrEMBL)
B3GALT2 ProteinO43825 (Uniprot-TrEMBL)
B3GALT4 ProteinO96024 (Uniprot-TrEMBL)
B3GALT5 ProteinQ9Y2C3 (Uniprot-TrEMBL)
B3GALTsComplexR-HSA-913717 (Reactome)
B4GALNT2ProteinQ8NHY0 (Uniprot-TrEMBL)
CMP-Neu5AcMetaboliteCHEBI:16556 (ChEBI)
CMPMetaboliteCHEBI:17361 (ChEBI)
FUT10 ProteinQ6P4F1 (Uniprot-TrEMBL)
FUT11 ProteinQ495W5 (Uniprot-TrEMBL)
FUT1ProteinP19526 (Uniprot-TrEMBL)
FUT2ProteinQ10981 (Uniprot-TrEMBL)
FUT3 ProteinP21217 (Uniprot-TrEMBL)
FUT3,5,6,7ComplexR-HSA-9605686 (Reactome)
FUT3ProteinP21217 (Uniprot-TrEMBL)
FUT4 ProteinP22083 (Uniprot-TrEMBL)
FUT4,5,9(10,11)ComplexR-HSA-9604002 (Reactome)
FUT5 ProteinQ11128 (Uniprot-TrEMBL)
FUT6 ProteinP51993 (Uniprot-TrEMBL)
FUT7 ProteinQ11130 (Uniprot-TrEMBL)
FUT9 ProteinQ9Y231 (Uniprot-TrEMBL)
GDP-FucMetaboliteCHEBI:17009 (ChEBI)
GDPMetaboliteCHEBI:17552 (ChEBI)
GlcNAc-β1,3-Gal-RMetaboliteCHEBI:140876 (ChEBI)
H antigen-RBCMetaboliteCHEBI:139351 (ChEBI)
H antigen-secMetaboliteCHEBI:140180 (ChEBI)
LeA MetaboliteCHEBI:140878 (ChEBI)
LeAMetaboliteCHEBI:140878 (ChEBI)
LeB MetaboliteCHEBI:140910 (ChEBI)
LeBMetaboliteCHEBI:140910 (ChEBI)
LeX MetaboliteCHEBI:140911 (ChEBI)
LeXMetaboliteCHEBI:140911 (ChEBI)
LeY MetaboliteCHEBI:140912 (ChEBI)
LeYMetaboliteCHEBI:140912 (ChEBI)
Lewis antigensComplexR-ALL-9606394 (Reactome)
Lewis antigensComplexR-ALL-9606400 (Reactome)
Mn2+ MetaboliteCHEBI:29035 (ChEBI)
PALM-C-Rhesus D proteinProteinQ02161 (Uniprot-TrEMBL)
RHCE geneGeneProductENSG00000188672 (Ensembl)
RHD geneGeneProductENSG00000187010 (Ensembl)
Rhesus C/E proteinProteinP18577 (Uniprot-TrEMBL)
ST3GAL3 ProteinQ11203 (Uniprot-TrEMBL)
ST3GAL3,4,6ComplexR-HSA-9605640 (Reactome)
ST3GAL3ProteinQ11203 (Uniprot-TrEMBL)
ST3GAL4 ProteinQ11206 (Uniprot-TrEMBL)
ST3GAL6 ProteinQ9Y274 (Uniprot-TrEMBL)
ST6GALNAC6ProteinQ969X2 (Uniprot-TrEMBL)
Sda MetaboliteCHEBI:140913 (ChEBI)
SdaMetaboliteCHEBI:140913 (ChEBI)
Type 1 DSGGMetaboliteCHEBI:140919 (ChEBI)
Type 1 MSGGMetaboliteCHEBI:140917 (ChEBI)
Type 1 chainMetaboliteCHEBI:140162 (ChEBI)
Type 2 MSGGMetaboliteCHEBI:140918 (ChEBI)
Type 2 chainMetaboliteCHEBI:139350 (ChEBI)
UDP-GalMetaboliteCHEBI:18307 (ChEBI)
UDP-GalNAcMetaboliteCHEBI:16650 (ChEBI)
UDPMetaboliteCHEBI:17659 (ChEBI)
dsLeA MetaboliteCHEBI:140915 (ChEBI)
dsLeAMetaboliteCHEBI:140915 (ChEBI)
sABO-A ProteinP16442 (Uniprot-TrEMBL)
sABO-A:Mn2+ComplexR-HSA-9034047 (Reactome)
sABO-B ProteinP16442 (Uniprot-TrEMBL)
sABO-B:Mn2+ComplexR-HSA-9034031 (Reactome)
sLeA MetaboliteCHEBI:140914 (ChEBI)
sLeAMetaboliteCHEBI:140914 (ChEBI)
sLeX MetaboliteCHEBI:140916 (ChEBI)
sLeXMetaboliteCHEBI:140916 (ChEBI)

Annotated Interactions

View all...
SourceTargetTypeDatabase referenceComment
A antigen-RBCArrowR-HSA-9033959 (Reactome)
A antigen-secArrowR-HSA-9034042 (Reactome)
ABO-A:Mn2+mim-catalysisR-HSA-9033959 (Reactome)
ABO-B:Mn2+mim-catalysisR-HSA-9033961 (Reactome)
B antigen-RBCArrowR-HSA-9033961 (Reactome)
B antigen-secArrowR-HSA-9034053 (Reactome)
B3GALTsmim-catalysisR-HSA-9603989 (Reactome)
B4GALNT2mim-catalysisR-HSA-9605700 (Reactome)
CMP-Neu5AcR-HSA-9603987 (Reactome)
CMP-Neu5AcR-HSA-9603991 (Reactome)
CMP-Neu5AcR-HSA-9605600 (Reactome)
CMPArrowR-HSA-9603987 (Reactome)
CMPArrowR-HSA-9603991 (Reactome)
CMPArrowR-HSA-9605600 (Reactome)
FUT1mim-catalysisR-HSA-9033949 (Reactome)
FUT2mim-catalysisR-HSA-9036987 (Reactome)
FUT2mim-catalysisR-HSA-9603982 (Reactome)
FUT2mim-catalysisR-HSA-9603983 (Reactome)
FUT3,5,6,7mim-catalysisR-HSA-9605682 (Reactome)
FUT3mim-catalysisR-HSA-9603986 (Reactome)
FUT3mim-catalysisR-HSA-9605609 (Reactome)
FUT3mim-catalysisR-HSA-9605644 (Reactome)
FUT4,5,9(10,11)mim-catalysisR-HSA-9603984 (Reactome)
GDP-FucR-HSA-9033949 (Reactome)
GDP-FucR-HSA-9036987 (Reactome)
GDP-FucR-HSA-9603982 (Reactome)
GDP-FucR-HSA-9603983 (Reactome)
GDP-FucR-HSA-9603984 (Reactome)
GDP-FucR-HSA-9603986 (Reactome)
GDP-FucR-HSA-9605609 (Reactome)
GDP-FucR-HSA-9605644 (Reactome)
GDP-FucR-HSA-9605682 (Reactome)
GDPArrowR-HSA-9033949 (Reactome)
GDPArrowR-HSA-9036987 (Reactome)
GDPArrowR-HSA-9603982 (Reactome)
GDPArrowR-HSA-9603983 (Reactome)
GDPArrowR-HSA-9603984 (Reactome)
GDPArrowR-HSA-9603986 (Reactome)
GDPArrowR-HSA-9605609 (Reactome)
GDPArrowR-HSA-9605644 (Reactome)
GDPArrowR-HSA-9605682 (Reactome)
GlcNAc-β1,3-Gal-RR-HSA-9603989 (Reactome)
H antigen-RBCArrowR-HSA-9033949 (Reactome)
H antigen-RBCR-HSA-9033959 (Reactome)
H antigen-RBCR-HSA-9033961 (Reactome)
H antigen-secArrowR-HSA-9036987 (Reactome)
H antigen-secArrowR-HSA-9037612 (Reactome)
H antigen-secR-HSA-9034042 (Reactome)
H antigen-secR-HSA-9034053 (Reactome)
H antigen-secR-HSA-9037612 (Reactome)
LeAArrowR-HSA-9603986 (Reactome)
LeAR-HSA-9603982 (Reactome)
LeBArrowR-HSA-9603982 (Reactome)
LeXArrowR-HSA-9603984 (Reactome)
LeXR-HSA-9603983 (Reactome)
LeYArrowR-HSA-9603983 (Reactome)
Lewis antigensArrowR-HSA-9606392 (Reactome)
Lewis antigensR-HSA-9606392 (Reactome)
PALM-C-Rhesus D proteinArrowR-HSA-9038658 (Reactome)
R-HSA-9033949 (Reactome) The H antigen is formed with the addition of a fucose (Fuc) sugar onto one of two precursor oligosaccharide sequences, Type 1 (RBCs) or Type 2 (secreted) chains. The FUT1 gene (aka H gene) found in hematopoietic cells produces galactoside 2-α-L-fucosyltransferase 1 (FUT1 aka α-1,2-fucosyltransferase 1) which mediates the transfer of a fucose (Fuc) sugar to the galactose (Gal) sugar of the Type 2 chain precursor Gal-β1,4-GlcNAc-β1,3-Gal-R (where R is a glycosphingolipid) to form the H antigen (Larsen et al. 1990). This is an essential step for subsequent formation of A and B antigens. Mutations that inactivate the FUT1 gene can result in the 'Bombay phenotype' where no A, B or H antigens are produced on RBCs (Koda et al 1997, Kaneko et al. 1997).
R-HSA-9033959 (Reactome) The histo-blood group ABO system transferase (ABO) is the basis of the ABO blood group system. A, B and AB individuals express a glycosyltransferase activity that converts the H antigen to the A antigen (by addition of GalNAc), to the B antigen (by addition of Gal) or to the AB antigen (by the addition of both GalNAc and Gal). O group individuals lack such activity. Differences in four critical amino acids (176, 235, 266 and 268) alter the specificity from an A to a B glycosyltransferase (Yamamoto et al. 1990, Yamamoto & McNeill 1996, Seto et al. 1999, Alfaro et al. 2008). The histo-blood group A transferase (ABO-A) utilises UDP-GalNAc to transfer N-acetylgalactosamine (GalNAc) to the H antigen formed via Type 2 chains to form the A antigen (Patenaude et al. 2002, Persson et al. 2007).
R-HSA-9033961 (Reactome) The histo-blood group ABO system transferase (ABO) is the basis of the ABO blood group system. A, B and AB individuals express glycosyltransferase activity that converts the H antigen to the A antigen (by addition of GalNAc), to the B antigen (by addition of Gal) or to the AB antigen (by the addition of both GalNAc and Gal). O group individuals lack such activity. Differences in four critical amino acids (176, 235, 266 and 268) alter the specificity from an A to a B glycosyltransferase (Yamamoto et al. 1990, Yamamoto & McNeill 1996, Seto et al. 1999, Alfaro et al. 2008). The histo-blood group B transferase (ABO-B) utilises UDP-Gal to transfer galactose (Gal) to the H antigen formed via Type 2 chains to form the B antigen (Patenaude et al. 2002, Persson et al. 2007).
R-HSA-9034042 (Reactome) As well as being a Golgi membrane resident, the histo-blood group ABO system transferase (ABO) can be proteolytically processed by an unknown protease into a soluble form, fucosylglycoprotein alpha-N-acetylgalactosaminyltransferase (sABO). A, B and AB individuals express glycosyltransferase activities that convert the H antigen to the A antigen (by addition of GalNAc), to the B antigen (by addition of Gal) or to the AB antigen (by the addition of both GalNAc and Gal). O group individuals lack such activity. Differences in four critical amino acids (176, 235, 266 and 268) alter the specificity from an A to a B glycosyltransferase (Yamamoto et al. 1990, Yamamoto & McNeill 1996, Seto et al. 1999, Alfaro et al. 2008). The soluble form of histo-blood group A transferase (sABO-A) utilises UDP-GalNAc to transfer N-acetylgalactosamine (GalNAc) to the H antigen formed via Type 1 chains to form the A antigen in secretors (A antigen-sec) (Patenaude et al. 2002, Persson et al. 2007).
R-HSA-9034053 (Reactome) As well as being a Golgi membrane resident, the histo-blood group ABO system transferase (ABO) can be proteolytically processed by an unknown protease into a soluble form, fucosylglycoprotein alpha-N-acetylgalactosaminyltransferase (sABO). A, B and AB individuals express glycosyltransferase activities that convert the H antigen to the A antigen (by addition of GalNAc), to the B antigen (by addition of Gal) or to the AB antigen (by the addition of both GalNAc and Gal). O group individuals lack such activity. Differences in four critical amino acids (176, 235, 266 and 268) alter the specificity from an A to a B glycosyltransferase (Yamamoto et al. 1990, Yamamoto & McNeill 1996, Seto et al. 1999, Alfaro et al. 2008). The soluble form of histo-blood group B transferase (sABO-B) utilises UDP-Gal to transfer galactose (Gal) to the H antigen formed via Type 1 chains to form the B antigen in secretors (B antigen-sec) (Patenaude et al. 2002, Persson et al. 2007).
R-HSA-9036987 (Reactome) The H antigen is formed by the addition of a fucose (Fuc) sugar onto one of two precursor oligosaccharide sequences; Type 1 or Type 2 chains. Type 2 chains are found on red blood cells (RBCs), epithelial cells and endothelial cells whereas Type 1 chains are primarily found in bodily secretions. The FUT2 gene (aka Se gene) is expressed in secretory epithelial cells in salivary glands and the gastrointestinal tract and produces galactoside 2-α-L-fucosyltransferase 2 (FUT2 aka α-1,2-fucosyltransferase 2) which mediates the transfer of a Fuc sugar to the galactose (Gal) sugar of the Type 1 chain precursor Gal-β1,3-GlcNAc-β1,3-Gal-R (where R is a glycoprotein) to form the H antigen (Kelly et al. 1995, Koda et al. 1997). This is an essential step for subsequent formation of A and B antigens. Mutations that inactivate the FUT2 gene can result in the 'Bombay phenotype' where no A, B or H antigens are produced in secretions (Koda et al 1997b, Kelly et al. 1994).
R-HSA-9037612 (Reactome) The H antigen in secretors (H antigen-sec) translocates from the Golgi lumen to the extracellular region by an unknown mechanism (Ewald & Sumner 2016). Here, it can be extended by the soluble forms of the histo-blood group ABO system transferase (sABO) enzymes.
R-HSA-9038653 (Reactome) The RHCE gene encodes the C/c and E/e proteins, presumably by alternative splicing of a pre messenger RNA (Bloy et al. 1998, Le Van Kim et al. 1992).
R-HSA-9038658 (Reactome) The RHD gene encodes the blood group Rh(D) polypeptide (Rhesus D protein, D antigen) (Bloy et al. 1988, Saboori et al. 1988, Avent et al. 1988). It is present only on the erythrocyte membrane as a post-translationally-modified palmitoylated protein (de Vetten & Agre 1988, Hartel-Schenk & Agre 1992).
R-HSA-9603982 (Reactome) The FUT2 gene (originally named the Se gene) expresses galactoside 2-alpha-L-fucosyltransferase 2 present on the Golgi membrane. FUT2 catalyses the α1,2 addition of fucose (Fuc) to Type 1 and Type 2 oligosaccharide chains, thereby playing a role in Lewis blood group determination (Kukowska-Latallo et al. 1990). Here, the addition of fucose to the terminal galactose (Gal) of the Lewis A antigen (LeA) in an α1,2 linkage forms the Lewis B antigen (LeB) (Kelly et al. 1995, Koda et al. 1997). LeB is found only in secretors in around 80% of Europeans. LeB is only formed when an individual inherits both FUT3 (Le) and FUT2 (Se) genes and around 80% of individuals inherit FUT2.
R-HSA-9603983 (Reactome) The FUT2 gene (originally named the Se gene) expresses galactoside 2-alpha-L-fucosyltransferase 2 present on the Golgi membrane. FUT2 catalyses the α1,2 addition of fucose (Fuc) to Type 1 and Type 2 oligosaccharide chains, thereby playing a role in Lewis blood group determination (Kukowska-Latallo et al. 1990). Here, the addition of fucose to the terminal galactose (Gal) of the Lewis X antigen (LeX) in an α1,2 linkage forms the Lewis Y antigen (LeY) (Kelly et al. 1995, Koda et al. 1997).
R-HSA-9603984 (Reactome) Analogous to FUT3 adding fucose to Type 1 chains to form LeA, alpha-(1,3)-fucosyltransferases 4, 5 and 9 (FUT4,5,9), resident on the Golgi membrane, mediate the transfer of fucose (Fuc) to Type 2 oligosaccharide chains in an α1,3 linkage to form the Lewis X antigen (LeX) (Goelz et al. 1990, Lowe et al. 1991, Weston et al. 1992, Toivonen et al. 2002). FUT10 and FUT11 also exhibit α1,3 fucosyltransferase activity (Mollicone et al. 2009).
R-HSA-9603986 (Reactome) The FUT3 gene (originally named the Le gene) expresses galactoside 3(4)-L-fucosyltransferase present on the Golgi membrane. FUT3 catalyses the α1,4 and α1,3 addition of fucose to Type 1 and Type 2 oligosaccharide chains respectively, thereby playing a role in Lewis blood group determination (Kukowska-Latallo et al. 1990). Here, the addition of fucose to the subterminal N-acetylglucosaminyl (GlcNAc) residue of Type 1 chains in an α1,4 linkage forms the Lewis A antigen (LeA). In Lewis negative (Le(a- b-)) individuals, FUT3 is inactivated by either of two mutations resulting in a single amino acid substitution in the catalytic region (Nishihara et al. 1993). LeA is found on red blood cells (~20%) and in saliva and other secretions (>90%) of Europeans. LeA is a water-soluble antigen and red blood cells acquire Lewis specificity by adsorbing it onto their surfaces from blood plasma.
R-HSA-9603987 (Reactome) CMP-N-acetylneuraminate-beta-1,4-galactoside alpha-2,3-sialyltransferase (ST3GAL3), located on the Golgi membrane, mediates the transfer of sialic acid (Neu5Ac, N-acetylneuraminic acid) in an α2,3 linkage to the terminal galactose of Gal-beta-1,3-GlcNAc- and Gal-beta-1,4-GalNAc- sequences found on glycoproteins and glycolipids (Kitagawa & Paulson 1993). The product, Type 1 monosialylgalactosylgloboside (Type 1 MSGG) is the precursor to sialyl Lewis a (sLeA) (also known as the CA19-9 antigen), a tumour marker that is used primarily in the management of pancreatic cancer. Increased sialylation has been observed to be associated with malignant transformation and metastasis.
R-HSA-9603989 (Reactome) The family of beta-1,3-galactosyltransferases (B3GALTs) transfer galactose (Gal) from UDP-alpha-D-galactose (UDP-Gal) to the β1,3 position of substrates with a terminal beta-N-acetylglucosamine (β-GlcNAc) residue. B3GALTs are involved in the biosynthesis of the carbohydrate moieties of glycolipids and glycoproteins. Here, five members of this family (B3GALT1-5) can mediate the transfer of Gal to GlcNAc-β1,3-Gal-R, the precursor to blood group Type 1 oligosaccharide chains found in bodily secretions (Amado et al. 1998, Isshiki et al. 1999; review Hennet 2002).
R-HSA-9603991 (Reactome) Alpha-N-acetylgalactosaminide alpha-2,6-sialyltransferase 6 (ST6GALNAC6), located on the Golgi membrane, mediates the transfer of sialic acid (Neu5Ac) to Type 1 monosialylgalactosylgloboside (Type 1 MSGG) to form Type 1 disialylgalactosylgloboside (Type 1 DSGG), the precursor for disialyl-Lewis A antigen (Senda et al. 2007). ST6GALNAC6 and DSGG are found in proximal tubule epithelial cells in normal kidney tissues and are both downregulated in renal cancer cell lines and cancer tissues (Senda et al. 2007).
R-HSA-9605600 (Reactome) The alpha-2,3-sialyltransferases ST3GAL3,4 and 6 (Kitagawa & Paulson 1993, Okajima et al. 1999, Kitagawa & Paulson 1994) located on the Golgi membrane, mediate the transfer of sialic acid (Neu5Ac, N-acetylneuraminic acid) in an α2,3 linkage to the terminal galactose of Gal-beta-1,4-GlcNAc- sequences found on glycoproteins and glycolipids to form Type 2 monosialylgalactosylgloboside (Type 2 MSGG).

Increased sialylation has been associated with malignant transformation and metastasis. ST3GAL6 is highly expressed in patients with multiple myeloma (MM). Knockdown of ST3GAL6 has been shown to prolong survival in mice (Glavey et al. 2014).
R-HSA-9605609 (Reactome) The FUT3 gene (originally named the Le gene) expresses galactoside 3(4)-L-fucosyltransferase present on the Golgi membrane. FUT3 catalyses the α1,4 and α1,3 addition of fucose to Type 1 and Type 2 oligosaccharide chains respectively, thereby playing a role in Lewis blood group determination (Kukowska-Latallo et al. 1990). Here, the addition of fucose to the subterminal N-acetylglucosaminyl (GlcNAc) residue of Type 1 monosialylgalactosylgloboside (Type 1 MSGG) in an α1,4 linkage forms the sialyl Lewis A antigen (sLeA), also known as the CA19-9 antigen, the most common tumour marker used primarily in the management of pancreatic and gastrointestinal cancers worldwide (Magnani 2004). If CA19-9 is initially elevated in pancreatic cancer, it may be requested several times during cancer treatment to monitor response and, on a regular basis following treatment, to help detect recurrence of the cancer.
R-HSA-9605644 (Reactome) The FUT3 gene (originally named the Le gene) expresses galactoside 3(4)-L-fucosyltransferase present on the Golgi membrane. FUT3 catalyses the α1,4 and α1,3 addition of fucose to Type 1 and Type 2 oligosaccharide chains respectively, thereby playing a role in Lewis blood group determination (Kukowska-Latallo et al. 1990). Here, the addition of fucose to the subterminal N-acetylglucosaminyl (GlcNAc) residue of Type 1 disialylgalactosylgloboside (Type 1 DSGG) in an α1,4 linkage forms the disialyl-Lewis A antigen (dsLeA).
R-HSA-9605682 (Reactome) Alpha-(1,3)-fucosyltransferases 3, 5, 6 and 7 (FUT3,5,6,7 respectively) mediate the transfer of fucose (Fuc) to glycan structures such as Type 2 monosialylgalactosylgloboside (Type 2 MSGG) to form the sialyl-Lewis X antigen (sLeX) (Kukowska-Latallo et al. 1990, Weston et al. 1992, Koszdin & Bowen 1992, Natsuka et al. 1994). The adhesion of sialyl-Lewis antigens to E-selectin on endothelial cell surfaces is a key step in the development of metastasis. Down-regulation of these FUTs may be a useful therapeutic approach in some cancers (Padro et al. 2011, Trinchera et al. 2011).
R-HSA-9605700 (Reactome) Beta-1,4 N-acetylgalactosaminyltransferase 2 (B4GALNT2), resident on the Golgi membrane, mediates the formation of the Sda antigen through the addition of an N-acetylgalactosamine (GalNAc) residue via a β1,4-linkage to the sub-terminal galactose residue substituted with an α2,3-linked sialic acid residue (Montiel et al. 2003, Lo Presti et al. 2003). The Sda antigen is a carbohydrate determinant expressed on erythrocytes and secretions of the vast majority of Caucasians and ethnic groups and its expression has an impact on the physiology and the pathology of several biological systems (Dall'Olio et al. 2014). In normal colon, B4GALNT2 levels are high and control the biosynthesis of Sda while at the same time inhibiting the formation of sialyl-Lewis X antigen (sLeX), involved in metastasis (Groux-Degroote et al. 2014).
R-HSA-9606392 (Reactome) Lewis antigens are components of exocrine epithelial secretions (Green 1989).
RHCE geneR-HSA-9038653 (Reactome)
RHD geneR-HSA-9038658 (Reactome)
Rhesus C/E proteinArrowR-HSA-9038653 (Reactome)
ST3GAL3,4,6mim-catalysisR-HSA-9605600 (Reactome)
ST3GAL3mim-catalysisR-HSA-9603987 (Reactome)
ST6GALNAC6mim-catalysisR-HSA-9603991 (Reactome)
SdaArrowR-HSA-9605700 (Reactome)
Type 1 DSGGArrowR-HSA-9603991 (Reactome)
Type 1 DSGGR-HSA-9605644 (Reactome)
Type 1 MSGGArrowR-HSA-9603987 (Reactome)
Type 1 MSGGR-HSA-9603991 (Reactome)
Type 1 MSGGR-HSA-9605609 (Reactome)
Type 1 chainArrowR-HSA-9603989 (Reactome)
Type 1 chainR-HSA-9036987 (Reactome)
Type 1 chainR-HSA-9603986 (Reactome)
Type 1 chainR-HSA-9603987 (Reactome)
Type 2 MSGGArrowR-HSA-9605600 (Reactome)
Type 2 MSGGR-HSA-9605682 (Reactome)
Type 2 MSGGR-HSA-9605700 (Reactome)
Type 2 chainR-HSA-9033949 (Reactome)
Type 2 chainR-HSA-9603984 (Reactome)
Type 2 chainR-HSA-9605600 (Reactome)
UDP-GalNAcR-HSA-9033959 (Reactome)
UDP-GalNAcR-HSA-9034042 (Reactome)
UDP-GalNAcR-HSA-9605700 (Reactome)
UDP-GalR-HSA-9033961 (Reactome)
UDP-GalR-HSA-9034053 (Reactome)
UDP-GalR-HSA-9603989 (Reactome)
UDPArrowR-HSA-9033959 (Reactome)
UDPArrowR-HSA-9033961 (Reactome)
UDPArrowR-HSA-9034042 (Reactome)
UDPArrowR-HSA-9034053 (Reactome)
UDPArrowR-HSA-9603989 (Reactome)
UDPArrowR-HSA-9605700 (Reactome)
dsLeAArrowR-HSA-9605644 (Reactome)
sABO-A:Mn2+mim-catalysisR-HSA-9034042 (Reactome)
sABO-B:Mn2+mim-catalysisR-HSA-9034053 (Reactome)
sLeAArrowR-HSA-9605609 (Reactome)
sLeXArrowR-HSA-9605682 (Reactome)
Personal tools