FOXO-mediated transcription of oxidative stress, metabolic and neuronal genes (Homo sapiens)

From WikiPathways

Jump to: navigation, search
1, 3-21, 23...1, 9, 17, 18, 351, 9, 17, 1849, 171213, 176, 12, 23, 309, 1712413, 17, 22886cytosolmitochondrial matrixendoplasmic reticulum lumennucleoplasmNPY geneFOXO3FOXO1 SREBF1 geneFOXO6 ABCA6 gene SIN3A:HDAC1,HDAC2dimersATXN3 PLXNA4ABCA6SREBF1 gene FOXO1 FOXO1 CATFOXO1 FOXO1,FOXO3,FOXO4:IGFBP1 geneFOXO1 FOXO4POMC geneSOD2 gene FOXO1,FOXO1:PPARGC1A,FOXO3,FOXO4,FOXO6FBXO32 geneFOXO1 FBXO32SIN3A CAT geneFOXO1 FOXO4 FOXO4 PLXNA4 geneCORT FOXO1 FOXO4:ATXN3:SOD2geneAGRP geneFOXO1 FOXO1:NPY geneFOXO3,FOXO6,(FOXO1)PPARGC1A FOXO6 FOXO3 FOXO1:PPARGC1A,FOXO3,FOXO4IGFPB1 geneCORST p-S423,S425-SMAD3 FOXO1:PPARGC1AALDO FOXO4 FOXO4 SIRT3GCK gene FOXO1:AGRP geneTRIM63 gene GCK geneTRIM63FBXO32 gene NPYTRIM63 gene FOXO3 11DCORST POMC(138-150)AGRPSOD2 geneNR3C1 HDAC1 G6PCPPARGC1A CORT FOXO1 SOD2HDAC1 FOXO1 FOXO1,FOXO3:p-2S-SMAD2/3:SMAD4:TRIM63 genePPARGC1AIGFBP1FOXO1 SREBF1(1-1147)FOXO6NPY gene FOXO3 ATXN3RETNFOXO4 FOXO1 FOXO6:PLXNA4 genep-2S-SMAD2/3:SMAD4G6PC geneAGRP gene FOXO1:SREBF1 gene2xHC-INS(25-54) HDAC2 FOXO4 FOXO1 SOD2 gene FOXO4 IGFPB1 gene FOXO1,FOXO3FOXO3 FOXO3 FOXO6 FOXO1,FOXO3,FOXO4FOXO1 FOXO3,FOXO6,(FOXO1):CAT geneRETN geneNR3C1:(ALDO,11DCORST,CORST,CORT) dimerABCA6 genePPARGC1A p-S465,S467-SMAD2 FOXO1 FOXO1:PPARGC1A,FOXO3,FOXO4:PCK1 geneFOXO1:SIN3A:HDAC1.HDAC2 dimers:GCK geneFOXO1 CAT gene FOXO1 PLXNA4 gene 11DCORST FOXO3 p-S423,S425-SMAD3 FOXO3 4xHC-INS(90-110) FOXO3 FOXO3 FOXO3:SOD2 geneG6PC gene FOXO1:RETN geneFOXO6 GCKFOXO1,FOXO3:ABCA6geneFOXO3 ATXN3 FOXO1:POMC genePOMC gene FOXO4:ATXN3p-S465,S467-SMAD2 HDAC2 RETN gene FOXO1,FOXO1:PPARGC1A,FOXO3,FOXO4,FOXO6:G6PC geneTRIM63 geneNR3C1 SIN3A FOXO3 FOXO1PCK1 gene FOXO1,FOXO3,(FOXO4):FBXO32 geneFOXO4 FOXO3 FOXO3 PPARGC1A FOXO1 FOXO4 SMAD4 PCK1PCK1 geneFOXO3 ALDO SMAD4 FOXO1,FOXO3,(FOXO4)FOXO1 FOXO1:NR3C1:(ALDO,11DCORST,CORST,CORT):TRIM63 geneCORST FOXO4 FOXO6 InsulinPPARGC1A FOXO1 2, 2662, 26122, 262, 262, 261233, 342, 26


Description

FOXO6, the least studied member of the FOXO family, directly stimulates transcription of PLXNA4 gene, encoding a co-factor for the semaphorin SEMA3A receptor. FOXO6-mediated regulation of PLXNA4 expression plays an important role in radial glia migration during cortical development (Paap et al. 2016).
FOXO-mediated up-regulation of genes involved in reduction of the oxidative stress burden is not specific to neurons, but plays an important role in neuronal survival and neurodegenerative diseases. FOXO3 and FOXO4, and possibly FOXO1, directly stimulate transcription of the SOD2 gene, encoding mitochondrial manganese-dependent superoxide dismutase, which converts superoxide to the less harmful hydrogen peroxide and oxygen (Kops et al. 2002, Hori et al. 2013, Araujo et al. 2011, Guan et al. 2016). FOXO4 stimulates SOD2 gene transcription in collaboration with ATXN3, a protein involved in spinocerebellar ataxia type 3 (SCA3) (Araujo et al. 2011). FOXO3 and FOXO6, and possibly FOXO1, directly stimulate transcription of the CAT gene, encoding catalase, an enzyme that converts hydrogen peroxide to water and oxygen, thus protecting cells from the oxidative stress (Awad et al. 2014, Kim et al. 2014, Rangarajan et al. 2015, Song et al. 2016, Liao et al. 2016, Guo et al. 2016).
FOXO transcription factors regulate transcription of several genes whose protein products are secreted from hypothalamic neurons to control appetite and food intake: NPY gene, AGRP gene and POMC gene. At low insulin levels, characteristic of starvation, FOXO transcription factors bind to insulin responsive elements (IRES) in the regulatory regions of NPY, AGRP and POMC gene. FOXO1 directly stimulates transcription of the NPY gene, encoding neuropeptide-Y (Kim et al. 2006, Hong et al. 2012), and the AGRP gene, encoding Agouti-related protein (Kitamura et al. 2006, Kim et al. 2006), which both stimulate food intake. At the same time, FOXO1 directly represses transcription of the POMC gene, encoding melanocyte stimulating hormone alpha , which suppresses food intake (Kitamura et al. 2006, Kim et al. 2006). When, upon food intake, blood insulin levels rise, insulin-mediated activation of PI3K/AKT signaling inhibits FOXO transcriptional activity.
In liver cells, FOXO transcription factors regulate transcription of genes involved in gluconeogenesis: G6PC gene, encoding glucose-6-phosphatase and PCK1 gene, encoding phosphoenolpyruvate carboxykinase. Actions of G6PC and PCK1 enable steady glucose blood levels during fasting. FOXO1, FOXO3 and FOXO4 directly stimulate PCK1 gene transcription (Hall et al. 2000, Yang et al. 2002, Puigserver et al. 2003), while all four FOXOs, FOXO1, FOXO3, FOXO4 and FOXO6 directly stimulate G6PC gene transcription (Yang et al. 2002, Puigserver et al. 2003, Onuma et al. 2006, Kim et al. 2011). FOXO-mediated induction of G6PC and PCK1 genes is negatively regulated by insulin-induced PI3K/AKT signaling.
FOXO1, FOXO3 and FOXO4 directly stimulate transcription of the IGFBP1 gene, encoding insulin growth factor binding protein 2 (Tang et al. 1999, Kops et al. 1999, Hall et al. 2000, Yang et al. 2002), which increases sensitivity of cells to insulin.
FOXO1 and FOXO3 directly stimulate transcription of the ABCA6 (ATP-binding cassette sub-family A member 6) gene, encoding a putative transporter protein that is thought to be involved in lipid homeostasis (Gai et al. 2013). The GCK (glucokinase) gene is another gene involved in lipid homeostasis that is regulated by FOXOs. FOXO1, acting with the SIN3A:HDAC complex, directly represses the GCK gene transcription, thus repressing lipogenesis in the absence of insulin (Langlet et al. 2017). The SREBF1 (SREBP1) gene, which encodes a transcriptional activator required for lipid homeostasis, is directly transcriptionally repressed by FOXO1 (Deng et al. 2012). Transcription of the RETN gene, encoding resistin, an adipocyte specific hormone that suppresses insulin-mediated uptake of glucose by adipose cells, is directly stimulated by FOXO1 (Liu et al. 2014).
Transcription of two genes encoding E3 ubiquitin ligases FBXO32 (Atrogin-1) and TRIM63 (MURF1), involved in degradation of muscle proteins and muscle wasting during starvation, is positively regulated by FOXO transcription factors (Sandri et al. 2004, Waddell et al. 2008, Raffaello et al. 2010, Senf et al. 2011, Bollinger et al. 2014, Wang et al. 2017). View original pathway at Reactome.

Comments

Reactome-Converter 
Pathway is converted from Reactome ID: 9615017
Reactome-version 
Reactome version: 75
Reactome Author 
Reactome Author: Orlic-Milacic, Marija

Try the New WikiPathways

View approved pathways at the new wikipathways.org.

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Tang ED, Nuñez G, Barr FG, Guan KL.; ''Negative regulation of the forkhead transcription factor FKHR by Akt.''; PubMed Europe PMC Scholia
  2. Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM.; ''A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis.''; PubMed Europe PMC Scholia
  3. Awad H, Nolette N, Hinton M, Dakshinamurti S.; ''AMPK and FoxO1 regulate catalase expression in hypoxic pulmonary arterial smooth muscle.''; PubMed Europe PMC Scholia
  4. Gai J, Ji M, Shi C, Li W, Chen S, Wang Y, Li H.; ''FoxO regulates expression of ABCA6, an intracellular ATP-binding-cassette transporter responsive to cholesterol.''; PubMed Europe PMC Scholia
  5. Langlet F, Haeusler RA, Lindén D, Ericson E, Norris T, Johansson A, Cook JR, Aizawa K, Wang L, Buettner C, Accili D.; ''Selective Inhibition of FOXO1 Activator/Repressor Balance Modulates Hepatic Glucose Handling.''; PubMed Europe PMC Scholia
  6. Kops GJ, Dansen TB, Polderman PE, Saarloos I, Wirtz KW, Coffer PJ, Huang TT, Bos JL, Medema RH, Burgering BM.; ''Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress.''; PubMed Europe PMC Scholia
  7. Paap RH, Oosterbroek S, Wagemans CMRJ, von Oerthel L, Schellevis RD, Vastenhouw-van der Linden AJA, Groot Koerkamp MJA, Hoekman MFM, Smidt MP.; ''FoxO6 affects Plxna4-mediated neuronal migration during mouse cortical development.''; PubMed Europe PMC Scholia
  8. Kim MS, Pak YK, Jang PG, Namkoong C, Choi YS, Won JC, Kim KS, Kim SW, Kim HS, Park JY, Kim YB, Lee KU.; ''Role of hypothalamic Foxo1 in the regulation of food intake and energy homeostasis.''; PubMed Europe PMC Scholia
  9. Hall RK, Yamasaki T, Kucera T, Waltner-Law M, O'Brien R, Granner DK.; ''Regulation of phosphoenolpyruvate carboxykinase and insulin-like growth factor-binding protein-1 gene expression by insulin. The role of winged helix/forkhead proteins.''; PubMed Europe PMC Scholia
  10. Hong SH, Lee KS, Kwak SJ, Kim AK, Bai H, Jung MS, Kwon OY, Song WJ, Tatar M, Yu K.; ''Minibrain/Dyrk1a regulates food intake through the Sir2-FOXO-sNPF/NPY pathway in Drosophila and mammals.''; PubMed Europe PMC Scholia
  11. Deng X, Zhang W, O-Sullivan I, Williams JB, Dong Q, Park EA, Raghow R, Unterman TG, Elam MB.; ''FoxO1 inhibits sterol regulatory element-binding protein-1c (SREBP-1c) gene expression via transcription factors Sp1 and SREBP-1c.''; PubMed Europe PMC Scholia
  12. Araujo J, Breuer P, Dieringer S, Krauss S, Dorn S, Zimmermann K, Pfeifer A, Klockgether T, Wuellner U, Evert BO.; ''FOXO4-dependent upregulation of superoxide dismutase-2 in response to oxidative stress is impaired in spinocerebellar ataxia type 3.''; PubMed Europe PMC Scholia
  13. Onuma H, Vander Kooi BT, Boustead JN, Oeser JK, O'Brien RM.; ''Correlation between FOXO1a (FKHR) and FOXO3a (FKHRL1) binding and the inhibition of basal glucose-6-phosphatase catalytic subunit gene transcription by insulin.''; PubMed Europe PMC Scholia
  14. Bollinger LM, Witczak CA, Houmard JA, Brault JJ.; ''SMAD3 augments FoxO3-induced MuRF-1 promoter activity in a DNA-binding-dependent manner.''; PubMed Europe PMC Scholia
  15. Liao L, Su X, Yang X, Hu C, Li B, Lv Y, Shuai Y, Jing H, Deng Z, Jin Y.; ''TNF-α Inhibits FoxO1 by Upregulating miR-705 to Aggravate Oxidative Damage in Bone Marrow-Derived Mesenchymal Stem Cells during Osteoporosis.''; PubMed Europe PMC Scholia
  16. Raffaello A, Milan G, Masiero E, Carnio S, Lee D, Lanfranchi G, Goldberg AL, Sandri M.; ''JunB transcription factor maintains skeletal muscle mass and promotes hypertrophy.''; PubMed Europe PMC Scholia
  17. Yang Z, Whelan J, Babb R, Bowen BR.; ''An mRNA splice variant of the AFX gene with altered transcriptional activity.''; PubMed Europe PMC Scholia
  18. Kops GJ, de Ruiter ND, De Vries-Smits AM, Powell DR, Bos JL, Burgering BM.; ''Direct control of the Forkhead transcription factor AFX by protein kinase B.''; PubMed Europe PMC Scholia
  19. Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A, Walsh K, Schiaffino S, Lecker SH, Goldberg AL.; ''Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy.''; PubMed Europe PMC Scholia
  20. Kim DH, Park MH, Chung KW, Kim MJ, Jung YR, Bae HR, Jang EJ, Lee JS, Im DS, Yu BP, Chung HY.; ''The essential role of FoxO6 phosphorylation in aging and calorie restriction.''; PubMed Europe PMC Scholia
  21. Guo F, Wang Q, Zhou Y, Wu L, Ma X, Liu F, Huang F, Qin G.; ''Lentiviral Vector-Mediated FoxO1 Overexpression Inhibits Extracellular Matrix Protein Secretion Under High Glucose Conditions in Mesangial Cells.''; PubMed Europe PMC Scholia
  22. Ayala JE, Streeper RS, Desgrosellier JS, Durham SK, Suwanichkul A, Svitek CA, Goldman JK, Barr FG, Powell DR, O'Brien RM.; ''Conservation of an insulin response unit between mouse and human glucose-6-phosphatase catalytic subunit gene promoters: transcription factor FKHR binds the insulin response sequence.''; PubMed Europe PMC Scholia
  23. Hori YS, Kuno A, Hosoda R, Horio Y.; ''Regulation of FOXOs and p53 by SIRT1 modulators under oxidative stress.''; PubMed Europe PMC Scholia
  24. Senf SM, Sandesara PB, Reed SA, Judge AR.; ''p300 Acetyltransferase activity differentially regulates the localization and activity of the FOXO homologues in skeletal muscle.''; PubMed Europe PMC Scholia
  25. Waddell DS, Baehr LM, van den Brandt J, Johnsen SA, Reichardt HM, Furlow JD, Bodine SC.; ''The glucocorticoid receptor and FOXO1 synergistically activate the skeletal muscle atrophy-associated MuRF1 gene.''; PubMed Europe PMC Scholia
  26. Knutti D, Kaul A, Kralli A.; ''A tissue-specific coactivator of steroid receptors, identified in a functional genetic screen.''; PubMed Europe PMC Scholia
  27. Rangarajan P, Karthikeyan A, Lu J, Ling EA, Dheen ST.; ''Sirtuin 3 regulates Foxo3a-mediated antioxidant pathway in microglia.''; PubMed Europe PMC Scholia
  28. Kitamura T, Feng Y, Kitamura YI, Chua SC, Xu AW, Barsh GS, Rossetti L, Accili D.; ''Forkhead protein FoxO1 mediates Agrp-dependent effects of leptin on food intake.''; PubMed Europe PMC Scholia
  29. Puigserver P, Rhee J, Donovan J, Walkey CJ, Yoon JC, Oriente F, Kitamura Y, Altomonte J, Dong H, Accili D, Spiegelman BM.; ''Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction.''; PubMed Europe PMC Scholia
  30. Guan XH, Liu XH, Hong X, Zhao N, Xiao YF, Wang LF, Tang L, Jiang K, Qian YS, Deng KY, Ji G, Fu M, Xin HB.; ''CD38 Deficiency Protects the Heart from Ischemia/Reperfusion Injury through Activating SIRT1/FOXOs-Mediated Antioxidative Stress Pathway.''; PubMed Europe PMC Scholia
  31. Kim DH, Perdomo G, Zhang T, Slusher S, Lee S, Phillips BE, Fan Y, Giannoukakis N, Gramignoli R, Strom S, Ringquist S, Dong HH.; ''FoxO6 integrates insulin signaling with gluconeogenesis in the liver.''; PubMed Europe PMC Scholia
  32. Liu CW, Yang SY, Lin CK, Liu HS, Ho LT, Wu LY, Lee MJ, Ku HC, Chang HH, Huang RN, Kao YH.; ''The forkhead transcription factor FOXO1 stimulates the expression of the adipocyte resistin gene.''; PubMed Europe PMC Scholia
  33. Wispé JR, Clark JC, Burhans MS, Kropp KE, Korfhagen TR, Whitsett JA.; ''Synthesis and processing of the precursor for human mangano-superoxide dismutase.''; PubMed Europe PMC Scholia
  34. Kienhöfer J, Häussler DJ, Ruckelshausen F, Muessig E, Weber K, Pimentel D, Ullrich V, Bürkle A, Bachschmid MM.; ''Association of mitochondrial antioxidant enzymes with mitochondrial DNA as integral nucleoid constituents.''; PubMed Europe PMC Scholia
  35. Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME.; ''Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor.''; PubMed Europe PMC Scholia
  36. Song C, Peng W, Yin S, Zhao J, Fu B, Zhang J, Mao T, Wu H, Zhang Y.; ''Melatonin improves age-induced fertility decline and attenuates ovarian mitochondrial oxidative stress in mice.''; PubMed Europe PMC Scholia
  37. Wang J, Wang F, Zhang P, Liu H, He J, Zhang C, Fan M, Chen X.; ''PGC-1α over-expression suppresses the skeletal muscle atrophy and myofiber-type composition during hindlimb unloading.''; PubMed Europe PMC Scholia

History

CompareRevisionActionTimeUserComment
114921view16:43, 25 January 2021ReactomeTeamReactome version 75
113366view11:44, 2 November 2020ReactomeTeamReactome version 74
112817view18:23, 9 October 2020DeSlOntology Term : 'forkhead class O signaling pathway' added !
112765view16:16, 9 October 2020ReactomeTeamNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
11DCORST MetaboliteCHEBI:16973 (ChEBI)
2xHC-INS(25-54) ProteinP01308 (Uniprot-TrEMBL)
4xHC-INS(90-110) ProteinP01308 (Uniprot-TrEMBL)
ABCA6 gene ProteinENSG00000154262 (Ensembl)
ABCA6 geneGeneProductENSG00000154262 (Ensembl)
ABCA6ProteinQ8N139 (Uniprot-TrEMBL)
AGRP gene ProteinENSG00000159723 (Ensembl)
AGRP geneGeneProductENSG00000159723 (Ensembl)
AGRPProteinO00253 (Uniprot-TrEMBL)
ALDO MetaboliteCHEBI:27584 (ChEBI)
ATXN3 ProteinP54252 (Uniprot-TrEMBL)
ATXN3ProteinP54252 (Uniprot-TrEMBL)
CAT gene ProteinENSG00000121691 (Ensembl)
CAT geneGeneProductENSG00000121691 (Ensembl)
CATProteinP04040 (Uniprot-TrEMBL)
CORST MetaboliteCHEBI:16827 (ChEBI)
CORT MetaboliteCHEBI:17650 (ChEBI)
FBXO32 gene ProteinENSG00000156804 (Ensembl)
FBXO32 geneGeneProductENSG00000156804 (Ensembl)
FBXO32ProteinQ969P5 (Uniprot-TrEMBL)
FOXO1 ProteinQ12778 (Uniprot-TrEMBL)
FOXO1,FOXO1:PPARGC1A,FOXO3,FOXO4,FOXO6:G6PC geneComplexR-HSA-9623250 (Reactome)
FOXO1,FOXO1:PPARGC1A,FOXO3,FOXO4,FOXO6ComplexR-HSA-9623256 (Reactome)
FOXO1,FOXO3,(FOXO4):FBXO32 geneComplexR-HSA-9624643 (Reactome)
FOXO1,FOXO3,(FOXO4)ComplexR-HSA-9620827 (Reactome)
FOXO1,FOXO3,FOXO4:IGFBP1 geneComplexR-HSA-9623423 (Reactome)
FOXO1,FOXO3,FOXO4ComplexR-HSA-9617987 (Reactome)
FOXO1,FOXO3:ABCA6 geneComplexR-HSA-9625082 (Reactome)
FOXO1,FOXO3:p-2S-SMAD2/3:SMAD4:TRIM63 geneComplexR-HSA-9625757 (Reactome)
FOXO1,FOXO3ComplexR-HSA-9614686 (Reactome)
FOXO1:AGRP geneComplexR-HSA-9623048 (Reactome)
FOXO1:NPY geneComplexR-HSA-9622979 (Reactome)
FOXO1:NR3C1:(ALDO,11DCORST,CORST,CORT):TRIM63 geneComplexR-HSA-9625735 (Reactome)
FOXO1:POMC geneComplexR-HSA-9623080 (Reactome)
FOXO1:PPARGC1A,FOXO3,FOXO4:PCK1 geneComplexR-HSA-9623320 (Reactome)
FOXO1:PPARGC1A,FOXO3,FOXO4ComplexR-HSA-9623398 (Reactome)
FOXO1:PPARGC1AComplexR-HSA-9623234 (Reactome)
FOXO1:RETN geneComplexR-HSA-9625827 (Reactome)
FOXO1:SIN3A:HDAC1.HDAC2 dimers:GCK geneComplexR-HSA-9625107 (Reactome)
FOXO1:SREBF1 geneComplexR-HSA-9625360 (Reactome)
FOXO1ProteinQ12778 (Uniprot-TrEMBL)
FOXO3 ProteinO43524 (Uniprot-TrEMBL)
FOXO3,FOXO6,(FOXO1):CAT geneComplexR-HSA-9622806 (Reactome)
FOXO3,FOXO6,(FOXO1)ComplexR-HSA-9622805 (Reactome)
FOXO3:SOD2 geneComplexR-HSA-9617974 (Reactome)
FOXO3ProteinO43524 (Uniprot-TrEMBL)
FOXO4 ProteinP98177 (Uniprot-TrEMBL)
FOXO4:ATXN3:SOD2 geneComplexR-HSA-9617936 (Reactome)
FOXO4:ATXN3ComplexR-HSA-9617923 (Reactome)
FOXO4ProteinP98177 (Uniprot-TrEMBL)
FOXO6 ProteinA8MYZ6 (Uniprot-TrEMBL)
FOXO6:PLXNA4 geneComplexR-HSA-9615222 (Reactome)
FOXO6ProteinA8MYZ6 (Uniprot-TrEMBL)
G6PC gene ProteinENSG00000131482 (Ensembl)
G6PC geneGeneProductENSG00000131482 (Ensembl)
G6PCProteinP35575 (Uniprot-TrEMBL)
GCK gene ProteinENSG00000106633 (Ensembl)
GCK geneGeneProductENSG00000106633 (Ensembl)
GCKProteinP35557 (Uniprot-TrEMBL)
HDAC1 ProteinQ13547 (Uniprot-TrEMBL)
HDAC2 ProteinQ92769 (Uniprot-TrEMBL)
IGFBP1ProteinP08833 (Uniprot-TrEMBL)
IGFPB1 gene ProteinENSG00000146678 (Ensembl)
IGFPB1 geneGeneProductENSG00000146678 (Ensembl)
InsulinComplexR-HSA-74674 (Reactome)
NPY gene ProteinENSG00000122585 (Ensembl)
NPY geneGeneProductENSG00000122585 (Ensembl)
NPYProteinP01303 (Uniprot-TrEMBL)
NR3C1 ProteinP04150 (Uniprot-TrEMBL)
NR3C1:(ALDO,11DCORST,CORST,CORT) dimerComplexR-HSA-879850 (Reactome)
PCK1 gene ProteinENSG00000124253 (Ensembl)
PCK1 geneGeneProductENSG00000124253 (Ensembl)
PCK1ProteinP35558 (Uniprot-TrEMBL)
PLXNA4 gene ProteinENSG00000221866 (Ensembl)
PLXNA4 geneGeneProductENSG00000221866 (Ensembl)
PLXNA4ProteinQ9HCM2 (Uniprot-TrEMBL)
POMC gene ProteinENSG00000115138 (Ensembl)
POMC geneGeneProductENSG00000115138 (Ensembl)
POMC(138-150)ProteinP01189 (Uniprot-TrEMBL)
PPARGC1A ProteinQ9UBK2 (Uniprot-TrEMBL)
PPARGC1AProteinQ9UBK2 (Uniprot-TrEMBL)
RETN gene ProteinENSG00000104918 (Ensembl)
RETN geneGeneProductENSG00000104918 (Ensembl)
RETNProteinQ9HD89 (Uniprot-TrEMBL)
SIN3A ProteinQ96ST3 (Uniprot-TrEMBL)
SIN3A:HDAC1,HDAC2 dimersComplexR-HSA-9022431 (Reactome)
SIRT3ProteinQ9NTG7 (Uniprot-TrEMBL)
SMAD4 ProteinQ13485 (Uniprot-TrEMBL)
SOD2 gene ProteinENSG00000112096 (Ensembl)
SOD2 geneGeneProductENSG00000112096 (Ensembl)
SOD2ProteinP04179 (Uniprot-TrEMBL)
SREBF1 gene ProteinENSG00000072310 (Ensembl)
SREBF1 geneGeneProductENSG00000072310 (Ensembl)
SREBF1(1-1147)ProteinP36956 (Uniprot-TrEMBL)
TRIM63 gene ProteinENSG00000158022 (Ensembl)
TRIM63 geneGeneProductENSG00000158022 (Ensembl)
TRIM63ProteinQ969Q1 (Uniprot-TrEMBL)
p-2S-SMAD2/3:SMAD4ComplexR-HSA-173511 (Reactome)
p-S423,S425-SMAD3 ProteinP84022 (Uniprot-TrEMBL)
p-S465,S467-SMAD2 ProteinQ15796 (Uniprot-TrEMBL)

Annotated Interactions

View all...
SourceTargetTypeDatabase referenceComment
ABCA6 geneR-HSA-9625091 (Reactome)
ABCA6 geneR-HSA-9625092 (Reactome)
ABCA6ArrowR-HSA-9625092 (Reactome)
AGRP geneR-HSA-9623018 (Reactome)
AGRP geneR-HSA-9623023 (Reactome)
AGRPArrowR-HSA-9623023 (Reactome)
ATXN3R-HSA-9617927 (Reactome)
CAT geneR-HSA-9622737 (Reactome)
CAT geneR-HSA-9622738 (Reactome)
CATArrowR-HSA-9622738 (Reactome)
FBXO32 geneR-HSA-9624611 (Reactome)
FBXO32 geneR-HSA-9624624 (Reactome)
FBXO32ArrowR-HSA-9624624 (Reactome)
FOXO1,FOXO1:PPARGC1A,FOXO3,FOXO4,FOXO6:G6PC geneArrowR-HSA-9623168 (Reactome)
FOXO1,FOXO1:PPARGC1A,FOXO3,FOXO4,FOXO6:G6PC geneArrowR-HSA-9623192 (Reactome)
FOXO1,FOXO1:PPARGC1A,FOXO3,FOXO4,FOXO6R-HSA-9623168 (Reactome)
FOXO1,FOXO3,(FOXO4):FBXO32 geneArrowR-HSA-9624611 (Reactome)
FOXO1,FOXO3,(FOXO4):FBXO32 geneArrowR-HSA-9624624 (Reactome)
FOXO1,FOXO3,(FOXO4)R-HSA-9624611 (Reactome)
FOXO1,FOXO3,FOXO4:IGFBP1 geneArrowR-HSA-9623415 (Reactome)
FOXO1,FOXO3,FOXO4:IGFBP1 geneArrowR-HSA-9623427 (Reactome)
FOXO1,FOXO3,FOXO4R-HSA-9623415 (Reactome)
FOXO1,FOXO3:ABCA6 geneArrowR-HSA-9625091 (Reactome)
FOXO1,FOXO3:ABCA6 geneArrowR-HSA-9625092 (Reactome)
FOXO1,FOXO3:p-2S-SMAD2/3:SMAD4:TRIM63 geneArrowR-HSA-9625693 (Reactome)
FOXO1,FOXO3:p-2S-SMAD2/3:SMAD4:TRIM63 geneArrowR-HSA-9625749 (Reactome)
FOXO1,FOXO3R-HSA-9625091 (Reactome)
FOXO1,FOXO3R-HSA-9625749 (Reactome)
FOXO1:AGRP geneArrowR-HSA-9623018 (Reactome)
FOXO1:AGRP geneArrowR-HSA-9623023 (Reactome)
FOXO1:NPY geneArrowR-HSA-9622980 (Reactome)
FOXO1:NPY geneArrowR-HSA-9622981 (Reactome)
FOXO1:NR3C1:(ALDO,11DCORST,CORST,CORT):TRIM63 geneArrowR-HSA-9625693 (Reactome)
FOXO1:NR3C1:(ALDO,11DCORST,CORST,CORT):TRIM63 geneArrowR-HSA-9625699 (Reactome)
FOXO1:POMC geneArrowR-HSA-9623059 (Reactome)
FOXO1:POMC geneTBarR-HSA-9623072 (Reactome)
FOXO1:PPARGC1A,FOXO3,FOXO4:PCK1 geneArrowR-HSA-9623280 (Reactome)
FOXO1:PPARGC1A,FOXO3,FOXO4:PCK1 geneArrowR-HSA-9623281 (Reactome)
FOXO1:PPARGC1A,FOXO3,FOXO4R-HSA-9623281 (Reactome)
FOXO1:PPARGC1AArrowR-HSA-9623240 (Reactome)
FOXO1:RETN geneArrowR-HSA-9625828 (Reactome)
FOXO1:RETN geneArrowR-HSA-9625863 (Reactome)
FOXO1:SIN3A:HDAC1.HDAC2 dimers:GCK geneArrowR-HSA-9625101 (Reactome)
FOXO1:SIN3A:HDAC1.HDAC2 dimers:GCK geneTBarR-HSA-9625124 (Reactome)
FOXO1:SREBF1 geneArrowR-HSA-9625324 (Reactome)
FOXO1:SREBF1 geneTBarR-HSA-9625346 (Reactome)
FOXO1ArrowR-HSA-9617833 (Reactome)
FOXO1R-HSA-9622980 (Reactome)
FOXO1R-HSA-9623018 (Reactome)
FOXO1R-HSA-9623059 (Reactome)
FOXO1R-HSA-9623240 (Reactome)
FOXO1R-HSA-9625101 (Reactome)
FOXO1R-HSA-9625324 (Reactome)
FOXO1R-HSA-9625699 (Reactome)
FOXO1R-HSA-9625828 (Reactome)
FOXO3,FOXO6,(FOXO1):CAT geneArrowR-HSA-9622737 (Reactome)
FOXO3,FOXO6,(FOXO1):CAT geneArrowR-HSA-9622738 (Reactome)
FOXO3,FOXO6,(FOXO1)R-HSA-9622737 (Reactome)
FOXO3:SOD2 geneArrowR-HSA-9617833 (Reactome)
FOXO3:SOD2 geneArrowR-HSA-9617972 (Reactome)
FOXO3R-HSA-9617972 (Reactome)
FOXO4:ATXN3:SOD2 geneArrowR-HSA-9617832 (Reactome)
FOXO4:ATXN3:SOD2 geneArrowR-HSA-9617833 (Reactome)
FOXO4:ATXN3ArrowR-HSA-9617927 (Reactome)
FOXO4:ATXN3R-HSA-9617832 (Reactome)
FOXO4R-HSA-9617927 (Reactome)
FOXO6:PLXNA4 geneArrowR-HSA-9615015 (Reactome)
FOXO6:PLXNA4 geneArrowR-HSA-9615023 (Reactome)
FOXO6R-HSA-9615015 (Reactome)
G6PC geneR-HSA-9623168 (Reactome)
G6PC geneR-HSA-9623192 (Reactome)
G6PCArrowR-HSA-9623192 (Reactome)
GCK geneR-HSA-9625101 (Reactome)
GCK geneR-HSA-9625124 (Reactome)
GCKArrowR-HSA-9625124 (Reactome)
IGFBP1ArrowR-HSA-9623427 (Reactome)
IGFPB1 geneR-HSA-9623415 (Reactome)
IGFPB1 geneR-HSA-9623427 (Reactome)
InsulinTBarR-HSA-9623168 (Reactome)
InsulinTBarR-HSA-9623281 (Reactome)
InsulinTBarR-HSA-9623415 (Reactome)
NPY geneR-HSA-9622980 (Reactome)
NPY geneR-HSA-9622981 (Reactome)
NPYArrowR-HSA-9622981 (Reactome)
NR3C1:(ALDO,11DCORST,CORST,CORT) dimerR-HSA-9625699 (Reactome)
PCK1 geneR-HSA-9623280 (Reactome)
PCK1 geneR-HSA-9623281 (Reactome)
PCK1ArrowR-HSA-9623280 (Reactome)
PLXNA4 geneR-HSA-9615015 (Reactome)
PLXNA4 geneR-HSA-9615023 (Reactome)
PLXNA4ArrowR-HSA-9615023 (Reactome)
POMC geneR-HSA-9623059 (Reactome)
POMC geneR-HSA-9623072 (Reactome)
POMC(138-150)ArrowR-HSA-9623072 (Reactome)
PPARGC1AR-HSA-9623240 (Reactome)
R-HSA-9615015 (Reactome) Based on studies in mice, FOXO6 binds FOXO response elements in the PLXNA4 gene locus, encoding the semaphorin SEMA3A co-receptor PLXNA4. FOXO response elements are found in the promoter and the first intron of the mouse Plxna4 gene (Paap et al. 2016). The first intron of the human PLXNA4 gene contains several predicted FOXO response elements.
R-HSA-9615023 (Reactome) Based on studies in mice, FOXO6 directly stimulates transcription of the semaphorin SEMA3A co-receptor PLXNA4 (Plexin A4). Defects in migration of the radial glia during cortical development observed in Foxo6 knockout mice can be restored by ectopic overexpression of Plxna4 (Paap et al. 2016).
R-HSA-9617832 (Reactome) Endogenous human FOXO4 and ATXN3 form a complex that binds to adjacent FOXO- and ATXN3- binding sites in the promoter of the SOD2 gene, encoding mitochondrial manganese-dependent superoxide dismutase (Araujo et al. 2011).
R-HSA-9617833 (Reactome) FOXO3 directly stimulates transcription of the SOD2 gene, encoding mitochondrial manganese-dependent superoxide dismutase (Kops et al. 2002). FOXO4 and ATXN3, which form a complex, also directly stimulate SOD2 gene transcription (Araujo et al. 2011). Acetylation of FOXO4 by EP300 (p300) or CREBBP (CBP) in response to oxidative stress does not affect FOXO4-mediated induction of SOD2 gene transcription (Dansen et al. 2009). FOXO1 positively regulates SOD2 transcription (Hori et al. 2013, Guan et al. 2016), but direct binding of FOXO1 to the SOD2 gene promoter has not been demonstrated.
R-HSA-9617927 (Reactome) Endogenous human FOXO4 forms a complex with endogenous human ATXN3 (Araujo et al. 2011), a deubiquitinase involved in protein homeostasis, transcription, cytoskeleton regulation and myogenesis (reviewed in Matos et al. 2018). ATXN3, however, does not deubiquitinate FOXO4. FOXO4 is not recruited to ATXN3-containing nuclear inclusions in spinocerebellar ataxia type 3 (SCA3) (Araujo et al. 2011).
R-HSA-9617972 (Reactome) FOXO3 binds forkhead box elements in the promoter region of the SOD2 gene, encoding mitochondrial manganese-dependent superoxide dismutase (Kops et al. 2002). FOXO3-mediated upregulation of the SOD2 gene transcription is positively regulated by SIRT3 histone deacetylase, which deacetylates FOXO3 under conditions of oxidative stress and increases nuclear localization of FOXO3 (Sundaresan et al. 2009, Rangarajan et al. 2015, Yang et al. 2016).
R-HSA-9622737 (Reactome) Based on studies with mouse FOXO proteins, FOXO3 (Rangarajan et al. 2015, Song et al. 2016) and FOXO6 (Kim et al. 2014) bind forkhead box elements in the promoter of the CAT gene, encoding the enzyme catalase. Catalase converts hydrogen peroxide to water and oxygen, thus protecting cells from the oxidative stress. FOXO1 positively regulates CAT gene transcription (Awad et al. 2014, Liao et al. 2016, Guo et al. 2016) and is probably able to bind to forkhead box elements in the CAT gene promoter.
FOXO3-mediated upregulation of the CAT gene transcription is positively regulated by SIRT3 histone deacetylase, which deacetylates FOXO3 under conditions of oxidative stress and increases nuclear localization of FOXO3 (Sundaresan et al. 2009, Rangarajan et al. 2015, Yang et al. 2016).
R-HSA-9622738 (Reactome) Transcription of the CAT gene is directly stimulated by FOXO3 (Rangarajan et al. 2015, Song et al. 2016) and FOXO6 (Kim et al. 2014), and is positively regulated by FOXO1 (Awad et al. 2014, Liao et al. 2016, Guo et al. 2016), although direct regulation by FOXO1 has not been demonstrated. CAT encodes the enzyme catalase, which converts hydrogen peroxide to water and oxygen, thus protecting cells from the oxidative stress.
R-HSA-9622980 (Reactome) In the hypothalamic orexigenic neurons FOXO1 binds to the insulin responsive elements (IREs) in the promoter of the NPY gene (Kim et al. 2006), encoding neuropeptide-Y .
R-HSA-9622981 (Reactome) FOXO1 directly stimulates transcription of the NPY gene, encoding neuropeptide-Y, in hypothalamic orexigenic neurons. NPY stimulates food intake and weight gain. Insulin and leptin, through PI3K/AKT signaling, inhibit FOXO1-mediated upregulation of NPY expression (Kim et al. 2006). NPY may act through a positive feedback loop to increase the transcriptional activity of FOXO1 through the PKA/CREB pathway (Hong et al. 2012).
R-HSA-9623018 (Reactome) Based on studies in mouse hypothalamic neurons, FOXO1 binds the promoter of the AGRP gene, encoding Agouti-related protein (Kitamura et al. 2006).
R-HSA-9623023 (Reactome) Based on studies in mice, FOXO1 directly promotes transcription of the AGRP gene, encoding Agouti-related protein, in orexigenic neurons of the hypothalamus. AGRP promotes food intake and weight gain. FOXO1-mediated upregulation of AGRP gene transcription involves recruitment of histone actyltransferases to the AGRP gene promoter and displacement of the NcoR transcriptional repressor complex. Leptin inhibits FOXO1-mediated upregulation of AGRP, probably acting through STAT3 (Kitamura et al. 2006, Kim et al. 2006).
R-HSA-9623059 (Reactome) Based on studies in mice, FOXO1 binds the promoter of the POMC gene, encoding Pro-opiomelanocortin (Kitamura et al. 2006). FOXO1-mediated repression of the POMC gene is positively regulated by SIRT1-mediated deacetylation of FOXO1 (Cakir et al. 2009).
R-HSA-9623072 (Reactome) Based on studies in mice, FOXO1 represses transcription of the POMC gene, encoding Pro-opiomelanocortin, in hypothalamic anorexigenic neurons. FOXO1-mediated repression of the POMC gene involves the recruitment of histone deacetylases and the NcoR repressor complex to the POMC gene promoter. Leptin inhibits binding of FOXO1 and promotes binding of STAT3 to the POMC gene promoter, thus stimulating POMC gene transcription. One of the cleavage products of Pro-opiomelanocortin is melanocyte-stimulating hormone alpha, which suppresses food intake (Kitamura et al. 2006, Kim et al. 2006).
R-HSA-9623168 (Reactome) FOXO1 (Ayala et al. 1999, Onuma et al. 2006, Puigserver et al. 2003), FOXO3 (Onuma et al. 2006), FOXO4 (Yang et al. 2002) and FOXO6 (Kim et al. 2011) bind insulin response elements in the promoter of the G6PC gene, encoding Glucose-6-phosphatase. Formation of the complex between FOXO1 and PPARGC1A (PGC-1alpha) may be required for FOXO1 to bind the G6PC gene promoter (Puigserver et al. 2003). Binding of FOXO transcription factors to the G6PC gene promoter is negatively regulated by insulin.
R-HSA-9623192 (Reactome) FOXO1 (Onuma et al. 2006), which can function in collaboration with PPARGC1A (PGC-1alpha) (Puigserver et al. 2003), FOXO3 (Onuma et al. 2006), FOXO4 (Yang et al. 2002) and FOXO6 (Kim et al. 2011) directly stimulate transcription of the G6PC gene, encoding Glucose-6-phosphatase. G6PC generates glucose and enables maintenance of steady glucose blood levels during fasting. FOXO6 mRNA levels increase in liver cells during fasting (Kim et al. 2011). Upregulation of G6PC expression by FOXO1 and FOXO6 is inhibited by insulin. FOXO-mediated induction of G6PC is involved in excessive endogenous glucose production and fasting hyperglycemia in diabetes (Kim et al. 2011).
R-HSA-9623240 (Reactome) Based on experiments in a mouse model system, FOXO1 forms a complex with the transcriptional co-activator PPARGC1A (PGC-1alpha). The interaction between FOXO1 and PPARGC1A is disrupted by AKT-mediated phosphorylation of FOXO1 (Puigserver et al. 2003).
R-HSA-9623280 (Reactome) Based on studies in mice, FOXO1 and PPARGC1A (PGC-1alpha) directly stimulate transcription of the PCK1 gene, encoding a gluconeogenesis enzyme Phosphoenolpyruvate carboxykinase (Puigserver et al. 2003).
FOXO3 (Hall et al. 2000) and FOXO4 (Yang et al. 2002) also directly stimulates PCK1 gene transcription .
R-HSA-9623281 (Reactome) Based on studies in mice, FOXO1, in complex with PPARGC1A (PGC-1alpha), binds the promoter of the PCK1 gene, encoding Phosphoenolpyruvate carboxykinase, an enzyme in the gluconeogenesis pathway. Interaction of FOXO1 with PPARGC1A is inhibited by AKT-mediated phosphorylation of FOXO1, and binding of FOXO1 and PPARGC1A to the PKC1 promoter is inhibited by insulin (Puigserver et al. 2003).
FOXO3 (Hall et al. 2000) and FOXO4 (Yang et al. 2002) also bind the promoter of the PCK1 gene.
R-HSA-9623415 (Reactome) FOXO1 (Tang et al. 1999), FOXO3 (Brunet et al. 1999, Hall et al. 2000) and FOXO4 (Kops et al. 1999, Yang et al. 2002) bind insulin response elements in the promoter of the IGFBP1 gene, encoding Insulin-like growth factor-binding protein 1. FOXO-mediated regulation of IGFBP1 gene expression is negatively regulated by insulin.
R-HSA-9623427 (Reactome) FOXO1 (Tang et al. 1999), FOXO3 (Hall et al. 2000) and FOXO4 (Kops et al. 1999, Yang et al. 2002) directly stimulate transcription of IGFBP1 gene, encoding Insulin-like growth factor-binding protein 1.
R-HSA-9624611 (Reactome) Based on studies with recombinant human proteins and the mouse Fbxo32 (Atrogin-1) promoter, FOXO1 (Sandri et al. 2004), FOXO3 (Raffaello et al. 2010), and possibly FOXO4 bind the promoter of the FBXO32 gene.
R-HSA-9624624 (Reactome) Transcription of the FBXO32 gene, encoding Atrogin-1, is positively regulated by FOXO1, FOXO3 and FOXO4 (Senf et al. 2011). Direct binding to the FBXO32 gene promoter has been demonstrated for FOXO1 (Sandri et al. 2004) and FOXO3 (Raffaello et al. 2010), but not FOXO4. Atrogin-1 is a component of an SCF ubiquitin ligase complex that promotes degradation of muscle cell proteins during muscle atrophy (Tintignac et al. 2005). The ability of the Insulin-like growth factor 1 (IGF1) to prevent muscle atrophy depends on PI3K/AKT-mediated inactivation of FOXO transcription factors (Stitt et al. 2004). Acetylation of FOXO3 negatively regulates FOXO3-mediated upregulation of FBXO32 (Bertaggia et al. 2012).
R-HSA-9625091 (Reactome) FOXO1 and FOXO3 bind forkhead box response elements in the promoter of the ABCA6 gene, encoding ATP-binding cassette sub-family A member 6, a putative transporter protein involved in lipid homeostasis (Gai et al. 2013).
R-HSA-9625092 (Reactome) FOXO1 and FOXO3 directly stimulate transcription of the ABCA6 (ATP-binding cassette sub-family A member 6) gene, encoding a putative transporter protein responsive to cholesterol and thought to be involved in lipid homeostasis (Gai et al. 2013).
R-HSA-9625101 (Reactome) Based on studies in mice, FOXO1 recruits transcriptional repressor SIN3A and histone deacetylases (HDACs) of the I class to the promoter of the GCK gene, encoding glucokinase (Langlet et al. 2017).
R-HSA-9625124 (Reactome) Based on studies in mice, FOXO1, together with SIN3A and histone deacetylases (HDACs), directly represses transcription of the GCK gene, encoding glucokinase. Insulin interferes with FOXO1-mediated repression of GCK expression, resulting in upregulation of GCK and stimulation of lipogenesis (Langlet et al. 2017).
R-HSA-9625324 (Reactome) FOXO1 binds to the promoter of the SREBF1 (SREBP1) gene, encoding Sterol regulatory element-binding protein 1, a transcriptional activator required for lipid homeostasis. Binding of FOXO1 to the SREBF1 promoter is inhibited by insulin (Deng et al. 2012).
R-HSA-9625346 (Reactome) FOXO1 directly represses transcription of the SREBF1 (SREBP1) gene, encoding Sterol regulatory element-binding protein 1, a transcriptional activator required for lipid homeostasis (Deng et al. 2012). FOXO1 binding interferes with recruitment of SREBF1 transcriptional activator NR1H3 (LXRA) to the SREBF1 promoter (Liu et al. 2010). CRY1, a transcriptional target of SREBF1, downregulates FOXO1 protein levels by promoting MDM2-mediated polyubiquitination and degradation of FOXO1 (Jang et al. 2016).
R-HSA-9625693 (Reactome) FOXO1 and activated glucocorticoid receptor (NR3C1) directly activate transcription of the TRIM63 gene, acting synergistically. TRIM63 (MuRF1) is an E3 ubiquitin ligase involved in degradation of muscle proteins and muscle atrophy during starvation, similar to FBXO31 (atrogin-1) (Waddell et al. 2008).
FOXO1 and FOXO3 directly activate TRIM63 gene transcription acting synergistically with SMAD3 (Bollinger et al. 2014, Wang et al. 2017). SMAD3 in the nucleus exist as a heterotrimer composed of two molecules of SMAD2 or SMAD3 and one molecule of SMAD4.
R-HSA-9625699 (Reactome) Glucocorticoid receptor elements (GREs) and forkhead box elements are conserved in the promoter of the mouse, rat and human TRIM63 gene, encoding an E3 ubiquitin ligase TRIM63 (MuRF1) (Waddell et al. 2008).
R-HSA-9625749 (Reactome) FOXO1 and FOXO3 can bind to the promoter of the TRIM63 gene, encoding an E3 ubiquitin ligase MURF1, together with SMAD3 (Bollinger et al. 2014, Wang et al. 2017). SMAD3 in the nucleus exist as a heterotrimer composed of two molecules of SMAD2 or SMAD3 and one molecule of SMAD4.
R-HSA-9625828 (Reactome) Based on studies in mice, FOXO1 binds the promoter of the RESTN gene, encoding resistin (Liu et al. 2014).
R-HSA-9625863 (Reactome) Based on studies in mice, transcription of the RETN gene, encoding resistin, is directly stimulated by FOXO1 (Liu et al. 2014). Resistin is an adipocyte specific hormone that suppresses insulin-mediated uptake of glucose by adipose cells (Steppan et al. 2001).
RETN geneR-HSA-9625828 (Reactome)
RETN geneR-HSA-9625863 (Reactome)
RETNArrowR-HSA-9625863 (Reactome)
SIN3A:HDAC1,HDAC2 dimersR-HSA-9625101 (Reactome)
SIRT3ArrowR-HSA-9617972 (Reactome)
SIRT3ArrowR-HSA-9622737 (Reactome)
SOD2 geneR-HSA-9617832 (Reactome)
SOD2 geneR-HSA-9617833 (Reactome)
SOD2 geneR-HSA-9617972 (Reactome)
SOD2ArrowR-HSA-9617833 (Reactome)
SREBF1 geneR-HSA-9625324 (Reactome)
SREBF1 geneR-HSA-9625346 (Reactome)
SREBF1(1-1147)ArrowR-HSA-9625346 (Reactome)
TRIM63 geneR-HSA-9625693 (Reactome)
TRIM63 geneR-HSA-9625699 (Reactome)
TRIM63 geneR-HSA-9625749 (Reactome)
TRIM63ArrowR-HSA-9625693 (Reactome)
p-2S-SMAD2/3:SMAD4R-HSA-9625749 (Reactome)
Personal tools