Amino acids regulate mTORC1 (Homo sapiens)

From WikiPathways

Jump to: navigation, search
1-3, 6, 8...17, 3920, 23, 32, 378, 23, 42, 491, 6, 11, 19, 39233, 10, 12, 13, 22...24, 44-46, 48235, 30, 3715, 25, 26, 34, 431, 3, 4, 6, 10...1, 6, 11, 19, 39lysosomal membraneLAMTOR4 ATP6V1E2 C12orf66 KPTN L-Arg ITFG2 ITFG2 SESN1 MLST8 ATP6V0D1 KICSTOR:GATOR1ATP6V1G1 ATP6V0E2 ATP6V1F FLCN:FNIP1,2CASTOR1 MLST8 KICSTOR:GATOR1:BMT2MIOS RHEB:GTPGDP ATP6V0E1 RRAGA ATP6V1G2 ITFG2 ATP6V1B2 ATP6V1C1 LAMTOR2 SEH1L RRAGB MIOS WDR59 LAMTOR5 GDPATP6V0D1 GDP NPRL2 SLC38A9:L-ArgSESN1,2:L-LeuLAMTOR5 SEC13 ATP6V1G2 ATP6V0C ATP6V0E2 ATP6V1B2 ATP6V1G1 ATP6V0D2 ATP6V1B1 ATP6V1E2 KPTN FNIP1 WDR24 LAMTOR5 SZT2 v-ATPase:Ragulator:RRAGA,B:GTP:RRAGC,D:GDPATP6V1C1 GTP ATP6V1G3 GTP GDP SZT2 WDR24 ATP6V0E2 TCIRG1 ATP6V1A ATP6V1B2 RRAGD SLC38A9 MTOR FNIP2 ATP6V1E2 ATP6V0D1 KPTN v-ATPase:Ragulator:RRAGA,B:GTP:RRAGC,D:GDP:mTORC1TCIRG1 ATP6V1D LAMTOR3 SLC38A9 ATP6V1B1 KICSTOR:GATOR1:GATOR2:CASTOR1:CASTOR1RPTOR LAMTOR3 ATP6V1A ATP6V0B NPRL3 RRAGD GDP FLCN LAMTOR5 GTPCASTOR1 LAMTOR3 TCIRG1 ATP6V1B1 C12orf66 ATP6V1B1 LAMTOR1 RRAGB ATP6V1G3 RRAGD DEPDC5 SH3BP4LAMTOR4 ATP6V1C2 RRAGB GDP ATP6V1H ATP6V1G1 TCIRG1 KICSTOR:GATOR1:GATOR2:SESN1,2SZT2 DEPDC5 KPTN AdoMet GTP ATP6V0B RRAGB ATP6V1A NPRL2 SESN2 ATP6V0E2 ATP6V1G3 C12orf66 LAMTOR3 ATP6V1E2 ATP6V1B2 SEH1L ATP6V1E2 RRAGD ATP6V1B2 ATP6V1G1 SESN2 LAMTOR4 ATP6V1F ATP6V1E1 ATP6V1C1 SLC38A9 SEC13 RRAGA SEH1L RPTOR L-LeuATP6V0D2 TCIRG1 DEPDC5 ATP6V0B ATP6V0C v-ATPase:Ragulator:RRAGA,B:GDP:RRAGC,D:GDP:SLC38A9:ArgRPTOR ATP6V1C2 ATP6V1B2 PiATP6V1H ATP6V1H GDP LAMTOR1 TCIRG1 ATP6V1D ATP6V1B1 DEPDC5 KPTN NPRL3 NPRL3 ATP6V1E1 ATP6V0D2 MIOS ATP6V0C LAMTOR4 v-ATPase:Ragulator:RRAGA,B:GDP:RRAGC,D:GDP:mTORC1:RHEB:GTPATP6V1F GTP L-Arg LAMTOR3 ATP6V1D RRAGC BMT2:AdoMetATP6V1D ATP6V1C2 L-Arg RHEB ATP6V0B LAMTOR4 GDP CASTOR2 RRAGB ATP6V1E1 ATP6V1G1 LAMTOR1 ATP6V1A v-ATPase:Ragulator:RRAGA,B:GDP:RRAGC,D:GTPLAMTOR2 ATP6V1E1 LAMTOR4 SEC13 NPRL2 L-ArgGDPWDR59 ATP6V1E1 ATP6V1E1 LAMTOR4 RRAGA DEPDC5 RRAGC L-Leu WDR59 ATP6V1F LAMTOR4 LAMTOR3 MLST8 ATP6V0E2 ATP6V0C ATP6V1B1 ATP6V1C2 DEPDC5 ATP6V1D NPRL2 ATP6V1C1 ATP6V1G3 ATP6V1C2 ATP6V0D1 LAMTOR5 ATP6V1B2 ATP6V1B1 ATP6V0B RRAGC LAMTOR2 ATP6V0E2 MTOR ATP6V1G2 mTORC1ATP6V1G2 ATP6V0E1 GTPRRAGC ATP6V1G1 RRAGC ATP6V1E2 L-Arg C12orf66 ATP6V1C2 RRAGA LAMTOR1 GDP GTP ATP6V1F ATP6V1C2 C12orf66 SZT2 LAMTOR5 ATP6V0E1 NPRL2 ATP6V0D2 RRAGD LAMTOR2 ATP6V0D1 ATP6V0D2 ATP6V0D1 ATP6V1B1 ATP6V1G2 BMT2 ATP6V0D2 RRAGD ATP6V1G2 ATP6V0E1 SZT2 ATP6V1F ATP6V0C ATP6V1F RRAGD NPRL2 ATP6V0C ATP6V0D1 RRAGB LAMTOR1 ATP6V1H LAMTOR3 ATP6V0E1 ATP6V0E1 ATP6V1G3 MIOS RPTOR RRAGC RRAGB NPRL3 ATP6V1C2 RRAGA MTOR ATP6V0E2 LAMTOR3 ATP6V1B2 ATP6V1E2 ATP6V1F ATP6V1C1 SEC13 ATP6V1A CASTOR1:L-Arg dimerATP6V1D ATP6V1A ATP6V0C ATP6V0E2 LAMTOR2 ATP6V1E1 RRAGA TCIRG1 CASTOR1 RRAGB LAMTOR1 CASTOR2 ATP6V1D ATP6V0D2 ATP6V0B ATP6V1G1 ATP6V1G3 ATP6V1H LAMTOR2 RRAGD ATP6V1C1 SESN1 SZT2 ATP6V0E1 ATP6V0D2 RRAGA CASTOR1:L-Arg:CASTOR2ATP6V1E1 ATP6V1H BMT2 ITFG2 CASTOR1 LAMTOR2 TCIRG1 ATP6V1G2 ATP6V1G1 v-ATPase:Ragulator:RRAGA,B:GTP:RRAGC,D:GDP:mTORC1:RHEB:GTPRRAGC LAMTOR1 KICSTOR:GATOR1:GATOR2:CASTOR1:CASTOR2MLST8 LAMTOR5 WDR24 ATP6V1G3 ATP6V1C1 v-ATPase:Ragulator:RRAGA,B:GDP:RRAGC,D:GDPRRAGA C12orf66 ATP6V0E1 KPTN RHEB v-ATPase:Ragulator:RRAGA,B:GTP:RRAGC,D:GDP:SLC38A9:ArgGTP ATP6V1E2 LAMTOR2 ATP6V1A ATP6V1H RRAGC ATP6V1D KICSTOR:GATOR1:GATOR2ATP6V0B ATP6V1C1 AdoMetLAMTOR1 ATP6V1H NPRL3 RHEB WDR59 L-Arg ATP6V1G3 ATP6V0D1 ITFG2 GTP ATP6V0C LAMTOR5 ATP6V1A ATP6V1G2 WDR24 MTOR SEH1L NPRL3 ATP6V0B ITFG2 Pi3929, 3321, 407, 31, 36, 50


Description

The mTORC1 complex acts as an integrator that regulates translation, lipid synthesis, autophagy, and cell growth in response to multiple inputs, notably glucose, oxygen, amino acids, and growth factors such as insulin (reviewed in Sabatini 2017, Meng et al. 2018, Kim and Guan 2019).
MTOR, the kinase subunit of mTORC1, is activated by interaction with RHEB:GTP at the cytosolic face of lysosomal membrane (Long et al. 2005, Tee et al. 2005, Long et al. 2007, Yang et al. 2017). Recruitment of mTORC1 to the lysosomal membrane is intricate and incompletely understood. At the center of the system is a complex of two small GTPases, the Rag heterodimer (RRAGA or RRAGB bound to RRAGC or RRAGD). The Rag heterodimer is tethered to the membrane by the Ragulator complex, which also binds the v-ATPase complex. The Rag heterodimer acts as a cross-regulating switch, with the binding of GTP by one subunit inhibiting the exchange of GDP for GTP by the other subunit (Shen et al. 2017). The active conformation of the Rag heterodimer that recruits mTORC1 to the lysosomal membrane is RRAGA,B:GTP:RRAGC,D:GDP while the inactive conformation, RRAGA,B:GDP:RRAGC,D:GTP, releases mTORC1 (Sancak et al. 2008, Kim et al. 2008, Sancak et al. 2010, Lawrence et al. 2018). GTPase activating proteins (GAPs) and guanyl nucleotide exchange factors (GEFs) acting upon the Rag heterodimer thereby regulate recruitment of mTORC1. RHEB:GTP at the lysosomal membrane also binds mTORC1 and directly activates mTORC1. During inactivation of mTORC1 in response to removal of amino acids, the TSC complex, a GAP for RHEB, is required in addition to the inactive Rag complex to release mTORC1 from RHEB and hence fully release mTORC1 from the lysosomal membrane (Demetriades et al. 2014).
Amino acids regulate recruitment of mTORC1 to the lysosomal membrane by at least 4 mechanisms (reviewed in Zhuang et al. 2019, Wolfson and Sabatini 2017, Yao et al. 2017). 1) Sestrin1 (SESN1) or Sestrin2 (SESN2) binds leucine and the Sestrin1,2:leucine complex is then released from the GATOR2 complex, allowing GATOR2 to positively regulate mTORC1 activation (Chantranupong et al. 2014, Parmigiani et al. 2014, Kim et al. 2015, Wolfson et al. 2016, Saxton et al. 2016). 2) CASTOR1 in a homodimer or a heterodimer with CASTOR2 binds arginine and the CASTOR1:arginine complex is likewise released from GATOR2, allowing GATOR2 to activate mTORC1 (Chantranupong et al. 2016, Saxton et al. 2016, Gai et al. 2016, Xia et al. 2016). 3) BMT2 (SAMTOR), a negative regulator of mTORC1 activation, binds S-adenosylmethionine (SAM), a derivative of methionine (Gu et al. 2017). The binding of SAM causes BMT2 to dissociate from GATOR1, allowing the activation of mTORC1. 4) The amino acid transporter SLC38A9 binds arginine and SLC38A9 then acts as a GEF to convert RRAGA,B:GDP to the active form, RRAGA,B:GTP (Rebsamen et al. 2015, Wang et al. 2015, Wyant et al. 2017, Shen and Sabatini 2018). Amino acid starvation also regulates the assembly of the V0 and V1 subunits of v-ATPase by an uncharacterized mechanism (Stransky and Forgac 2015) and v-ATPase is required for activation of mTORC1 by amino acids (Zoncu et al. 2011). Glutamine activates mTORC1 by a mechanism that is independent of the Rag GTPases, requires ARF1, but is not yet fully elucidated (Jewell et al. 2015). View original pathway at Reactome.

Comments

Reactome-Converter 
Pathway is converted from Reactome ID: 9639288
Reactome-version 
Reactome version: 75
Reactome Author 
Reactome Author: May, Bruce

Try the New WikiPathways

View approved pathways at the new wikipathways.org.

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Xia J, Wang R, Zhang T, Ding J.; ''Structural insight into the arginine-binding specificity of CASTOR1 in amino acid-dependent mTORC1 signaling.''; PubMed Europe PMC Scholia
  2. Meng D, Frank AR, Jewell JL.; ''mTOR signaling in stem and progenitor cells.''; PubMed Europe PMC Scholia
  3. Parmigiani A, Nourbakhsh A, Ding B, Wang W, Kim YC, Akopiants K, Guan KL, Karin M, Budanov AV.; ''Sestrins inhibit mTORC1 kinase activation through the GATOR complex.''; PubMed Europe PMC Scholia
  4. Shen K, Valenstein ML, Gu X, Sabatini DM.; ''Arg-78 of Nprl2 catalyzes GATOR1-stimulated GTP hydrolysis by the Rag GTPases.''; PubMed Europe PMC Scholia
  5. Petit CS, Roczniak-Ferguson A, Ferguson SM.; ''Recruitment of folliculin to lysosomes supports the amino acid-dependent activation of Rag GTPases.''; PubMed Europe PMC Scholia
  6. Gai Z, Wang Q, Yang C, Wang L, Deng W, Wu G.; ''Structural mechanism for the arginine sensing and regulation of CASTOR1 in the mTORC1 signaling pathway.''; PubMed Europe PMC Scholia
  7. Zhang T, Wang R, Wang Z, Wang X, Wang F, Ding J.; ''Structural basis for Ragulator functioning as a scaffold in membrane-anchoring of Rag GTPases and mTORC1.''; PubMed Europe PMC Scholia
  8. Rebsamen M, Pochini L, Stasyk T, de Araújo ME, Galluccio M, Kandasamy RK, Snijder B, Fauster A, Rudashevskaya EL, Bruckner M, Scorzoni S, Filipek PA, Huber KV, Bigenzahn JW, Heinz LX, Kraft C, Bennett KL, Indiveri C, Huber LA, Superti-Furga G.; ''SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1.''; PubMed Europe PMC Scholia
  9. Yao Y, Jones E, Inoki K.; ''Lysosomal Regulation of mTORC1 by Amino Acids in Mammalian Cells.''; PubMed Europe PMC Scholia
  10. Peng M, Yin N, Li MO.; ''Sestrins function as guanine nucleotide dissociation inhibitors for Rag GTPases to control mTORC1 signaling.''; PubMed Europe PMC Scholia
  11. Chantranupong L, Scaria SM, Saxton RA, Gygi MP, Shen K, Wyant GA, Wang T, Harper JW, Gygi SP, Sabatini DM.; ''The CASTOR Proteins Are Arginine Sensors for the mTORC1 Pathway.''; PubMed Europe PMC Scholia
  12. Saxton RA, Knockenhauer KE, Wolfson RL, Chantranupong L, Pacold ME, Wang T, Schwartz TU, Sabatini DM.; ''Structural basis for leucine sensing by the Sestrin2-mTORC1 pathway.''; PubMed Europe PMC Scholia
  13. Budanov AV.; ''SESTRINs regulate mTORC1 via RRAGs: The riddle of GATOR.''; PubMed Europe PMC Scholia
  14. Sabatini DM.; ''Twenty-five years of mTOR: Uncovering the link from nutrients to growth.''; PubMed Europe PMC Scholia
  15. Zoncu R, Bar-Peled L, Efeyan A, Wang S, Sancak Y, Sabatini DM.; ''mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase.''; PubMed Europe PMC Scholia
  16. Bar-Peled L, Chantranupong L, Cherniack AD, Chen WW, Ottina KA, Grabiner BC, Spear ED, Carter SL, Meyerson M, Sabatini DM.; ''A Tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1.''; PubMed Europe PMC Scholia
  17. Gu X, Orozco JM, Saxton RA, Condon KJ, Liu GY, Krawczyk PA, Scaria SM, Harper JW, Gygi SP, Sabatini DM.; ''SAMTOR is an S-adenosylmethionine sensor for the mTORC1 pathway.''; PubMed Europe PMC Scholia
  18. Demetriades C, Doumpas N, Teleman AA.; ''Regulation of TORC1 in response to amino acid starvation via lysosomal recruitment of TSC2.''; PubMed Europe PMC Scholia
  19. Saxton RA, Chantranupong L, Knockenhauer KE, Schwartz TU, Sabatini DM.; ''Mechanism of arginine sensing by CASTOR1 upstream of mTORC1.''; PubMed Europe PMC Scholia
  20. Bar-Peled L, Schweitzer LD, Zoncu R, Sabatini DM.; ''Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1.''; PubMed Europe PMC Scholia
  21. Baba M, Hong SB, Sharma N, Warren MB, Nickerson ML, Iwamatsu A, Esposito D, Gillette WK, Hopkins RF, Hartley JL, Furihata M, Oishi S, Zhen W, Burke TR, Linehan WM, Schmidt LS, Zbar B.; ''Folliculin encoded by the BHD gene interacts with a binding protein, FNIP1, and AMPK, and is involved in AMPK and mTOR signaling.''; PubMed Europe PMC Scholia
  22. Chantranupong L, Wolfson RL, Orozco JM, Saxton RA, Scaria SM, Bar-Peled L, Spooner E, Isasa M, Gygi SP, Sabatini DM.; ''The Sestrins interact with GATOR2 to negatively regulate the amino-acid-sensing pathway upstream of mTORC1.''; PubMed Europe PMC Scholia
  23. Shen K, Sabatini DM.; ''Ragulator and SLC38A9 activate the Rag GTPases through noncanonical GEF mechanisms.''; PubMed Europe PMC Scholia
  24. Long X, Ortiz-Vega S, Lin Y, Avruch J.; ''Rheb binding to mammalian target of rapamycin (mTOR) is regulated by amino acid sufficiency.''; PubMed Europe PMC Scholia
  25. Lawrence RE, Cho KF, Rappold R, Thrun A, Tofaute M, Kim DJ, Moldavski O, Hurley JH, Zoncu R.; ''A nutrient-induced affinity switch controls mTORC1 activation by its Rag GTPase-Ragulator lysosomal scaffold.''; PubMed Europe PMC Scholia
  26. Kim E, Goraksha-Hicks P, Li L, Neufeld TP, Guan KL.; ''Regulation of TORC1 by Rag GTPases in nutrient response.''; PubMed Europe PMC Scholia
  27. Kim J, Guan KL.; ''mTOR as a central hub of nutrient signalling and cell growth.''; PubMed Europe PMC Scholia
  28. Stransky LA, Forgac M.; ''Amino Acid Availability Modulates Vacuolar H+-ATPase Assembly.''; PubMed Europe PMC Scholia
  29. Kim JS, Ro SH, Kim M, Park HW, Semple IA, Park H, Cho US, Wang W, Guan KL, Karin M, Lee JH.; ''Sestrin2 inhibits mTORC1 through modulation of GATOR complexes.''; PubMed Europe PMC Scholia
  30. Tsun ZY, Bar-Peled L, Chantranupong L, Zoncu R, Wang T, Kim C, Spooner E, Sabatini DM.; ''The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1.''; PubMed Europe PMC Scholia
  31. Yonehara R, Nada S, Nakai T, Nakai M, Kitamura A, Ogawa A, Nakatsumi H, Nakayama KI, Li S, Standley DM, Yamashita E, Nakagawa A, Okada M.; ''Structural basis for the assembly of the Ragulator-Rag GTPase complex.''; PubMed Europe PMC Scholia
  32. Kim YM, Stone M, Hwang TH, Kim YG, Dunlevy JR, Griffin TJ, Kim DH.; ''SH3BP4 is a negative regulator of amino acid-Rag GTPase-mTORC1 signaling.''; PubMed Europe PMC Scholia
  33. Wolfson RL, Chantranupong L, Saxton RA, Shen K, Scaria SM, Cantor JR, Sabatini DM.; ''Sestrin2 is a leucine sensor for the mTORC1 pathway.''; PubMed Europe PMC Scholia
  34. Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, Bar-Peled L, Sabatini DM.; ''The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1.''; PubMed Europe PMC Scholia
  35. Jewell JL, Kim YC, Russell RC, Yu FX, Park HW, Plouffe SW, Tagliabracci VS, Guan KL.; ''Metabolism. Differential regulation of mTORC1 by leucine and glutamine.''; PubMed Europe PMC Scholia
  36. Su MY, Morris KL, Kim DJ, Fu Y, Lawrence R, Stjepanovic G, Zoncu R, Hurley JH.; ''Hybrid Structure of the RagA/C-Ragulator mTORC1 Activation Complex.''; PubMed Europe PMC Scholia
  37. Shen K, Choe A, Sabatini DM.; ''Intersubunit Crosstalk in the Rag GTPase Heterodimer Enables mTORC1 to Respond Rapidly to Amino Acid Availability.''; PubMed Europe PMC Scholia
  38. Wolfson RL, Sabatini DM.; ''The Dawn of the Age of Amino Acid Sensors for the mTORC1 Pathway.''; PubMed Europe PMC Scholia
  39. Wolfson RL, Chantranupong L, Wyant GA, Gu X, Orozco JM, Shen K, Condon KJ, Petri S, Kedir J, Scaria SM, Abu-Remaileh M, Frankel WN, Sabatini DM.; ''KICSTOR recruits GATOR1 to the lysosome and is necessary for nutrients to regulate mTORC1.''; PubMed Europe PMC Scholia
  40. Takagi Y, Kobayashi T, Shiono M, Wang L, Piao X, Sun G, Zhang D, Abe M, Hagiwara Y, Takahashi K, Hino O.; ''Interaction of folliculin (Birt-Hogg-Dubé gene product) with a novel Fnip1-like (FnipL/Fnip2) protein.''; PubMed Europe PMC Scholia
  41. Zhuang Y, Wang XX, He J, He S, Yin Y.; ''Recent advances in understanding of amino acid signaling to mTORC1 activation.''; PubMed Europe PMC Scholia
  42. Wang S, Tsun ZY, Wolfson RL, Shen K, Wyant GA, Plovanich ME, Yuan ED, Jones TD, Chantranupong L, Comb W, Wang T, Bar-Peled L, Zoncu R, Straub C, Kim C, Park J, Sabatini BL, Sabatini DM.; ''Metabolism. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1.''; PubMed Europe PMC Scholia
  43. Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM.; ''Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids.''; PubMed Europe PMC Scholia
  44. Yang H, Jiang X, Li B, Yang HJ, Miller M, Yang A, Dhar A, Pavletich NP.; ''Mechanisms of mTORC1 activation by RHEB and inhibition by PRAS40.''; PubMed Europe PMC Scholia
  45. Long X, Lin Y, Ortiz-Vega S, Busch S, Avruch J.; ''The Rheb switch 2 segment is critical for signaling to target of rapamycin complex 1.''; PubMed Europe PMC Scholia
  46. Long X, Lin Y, Ortiz-Vega S, Yonezawa K, Avruch J.; ''Rheb binds and regulates the mTOR kinase.''; PubMed Europe PMC Scholia
  47. Schürmann A, Brauers A, Massmann S, Becker W, Joost HG.; ''Cloning of a novel family of mammalian GTP-binding proteins (RagA, RagBs, RagB1) with remote similarity to the Ras-related GTPases.''; PubMed Europe PMC Scholia
  48. Tee AR, Blenis J, Proud CG.; ''Analysis of mTOR signaling by the small G-proteins, Rheb and RhebL1.''; PubMed Europe PMC Scholia
  49. Wyant GA, Abu-Remaileh M, Wolfson RL, Chen WW, Freinkman E, Danai LV, Vander Heiden MG, Sabatini DM.; ''mTORC1 Activator SLC38A9 Is Required to Efflux Essential Amino Acids from Lysosomes and Use Protein as a Nutrient.''; PubMed Europe PMC Scholia
  50. de Araujo MEG, Naschberger A, Fürnrohr BG, Stasyk T, Dunzendorfer-Matt T, Lechner S, Welti S, Kremser L, Shivalingaiah G, Offterdinger M, Lindner HH, Huber LA, Scheffzek K.; ''Crystal structure of the human lysosomal mTORC1 scaffold complex and its impact on signaling.''; PubMed Europe PMC Scholia
  51. Peng M, Yin N, Li MO.; ''SZT2 dictates GATOR control of mTORC1 signalling.''; PubMed Europe PMC Scholia

History

CompareRevisionActionTimeUserComment
115084view17:03, 25 January 2021ReactomeTeamReactome version 75
113526view12:00, 2 November 2020ReactomeTeamReactome version 74
112836view18:42, 9 October 2020DeSlOntology Term : 'regulatory pathway' added !
112781view16:18, 9 October 2020ReactomeTeamNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
ATP6V0B ProteinQ99437 (Uniprot-TrEMBL)
ATP6V0C ProteinP27449 (Uniprot-TrEMBL)
ATP6V0D1 ProteinP61421 (Uniprot-TrEMBL)
ATP6V0D2 ProteinQ8N8Y2 (Uniprot-TrEMBL)
ATP6V0E1 ProteinO15342 (Uniprot-TrEMBL)
ATP6V0E2 ProteinQ8NHE4 (Uniprot-TrEMBL)
ATP6V1A ProteinP38606 (Uniprot-TrEMBL)
ATP6V1B1 ProteinP15313 (Uniprot-TrEMBL)
ATP6V1B2 ProteinP21281 (Uniprot-TrEMBL)
ATP6V1C1 ProteinP21283 (Uniprot-TrEMBL)
ATP6V1C2 ProteinQ8NEY4 (Uniprot-TrEMBL)
ATP6V1D ProteinQ9Y5K8 (Uniprot-TrEMBL)
ATP6V1E1 ProteinP36543 (Uniprot-TrEMBL)
ATP6V1E2 ProteinQ96A05 (Uniprot-TrEMBL)
ATP6V1F ProteinQ16864 (Uniprot-TrEMBL)
ATP6V1G1 ProteinO75348 (Uniprot-TrEMBL)
ATP6V1G2 ProteinO95670 (Uniprot-TrEMBL)
ATP6V1G3 ProteinQ96LB4 (Uniprot-TrEMBL)
ATP6V1H ProteinQ9UI12 (Uniprot-TrEMBL)
AdoMet MetaboliteCHEBI:15414 (ChEBI)
AdoMetMetaboliteCHEBI:15414 (ChEBI)
BMT2 ProteinQ1RMZ1 (Uniprot-TrEMBL)
BMT2:AdoMetComplexR-HSA-9640252 (Reactome)
C12orf66 ProteinQ96MD2 (Uniprot-TrEMBL)
CASTOR1 ProteinQ8WTX7 (Uniprot-TrEMBL)
CASTOR1:L-Arg dimerComplexR-HSA-9657636 (Reactome)
CASTOR1:L-Arg:CASTOR2ComplexR-HSA-9640285 (Reactome)
CASTOR2 ProteinA6NHX0 (Uniprot-TrEMBL)
DEPDC5 ProteinO75140 (Uniprot-TrEMBL)
FLCN ProteinQ8NFG4 (Uniprot-TrEMBL)
FLCN:FNIP1,2ComplexR-HSA-9640226 (Reactome)
FNIP1 ProteinQ8TF40 (Uniprot-TrEMBL)
FNIP2 ProteinQ9P278 (Uniprot-TrEMBL)
GDP MetaboliteCHEBI:17552 (ChEBI)
GDPMetaboliteCHEBI:17552 (ChEBI)
GTP MetaboliteCHEBI:15996 (ChEBI)
GTPMetaboliteCHEBI:15996 (ChEBI)
ITFG2 ProteinQ969R8 (Uniprot-TrEMBL)
KICSTOR:GATOR1:BMT2ComplexR-HSA-9640224 (Reactome)
KICSTOR:GATOR1:GATOR2:CASTOR1:CASTOR1ComplexR-HSA-9657634 (Reactome)
KICSTOR:GATOR1:GATOR2:CASTOR1:CASTOR2ComplexR-HSA-9640231 (Reactome)
KICSTOR:GATOR1:GATOR2:SESN1,2ComplexR-HSA-9639275 (Reactome)
KICSTOR:GATOR1:GATOR2ComplexR-HSA-9639281 (Reactome)
KICSTOR:GATOR1ComplexR-HSA-9639274 (Reactome)
KPTN ProteinQ9Y664 (Uniprot-TrEMBL)
L-Arg MetaboliteCHEBI:32682 (ChEBI)
L-ArgMetaboliteCHEBI:32682 (ChEBI)
L-Leu MetaboliteCHEBI:57427 (ChEBI)
L-LeuMetaboliteCHEBI:57427 (ChEBI)
LAMTOR1 ProteinQ6IAA8 (Uniprot-TrEMBL)
LAMTOR2 ProteinQ9Y2Q5 (Uniprot-TrEMBL)
LAMTOR3 ProteinQ9UHA4 (Uniprot-TrEMBL)
LAMTOR4 ProteinQ0VGL1 (Uniprot-TrEMBL)
LAMTOR5 ProteinO43504 (Uniprot-TrEMBL)
MIOS ProteinQ9NXC5 (Uniprot-TrEMBL)
MLST8 ProteinQ9BVC4 (Uniprot-TrEMBL)
MTOR ProteinP42345 (Uniprot-TrEMBL)
NPRL2 ProteinQ8WTW4 (Uniprot-TrEMBL)
NPRL3 ProteinQ12980 (Uniprot-TrEMBL)
PiMetaboliteCHEBI:43474 (ChEBI)
RHEB ProteinQ15382 (Uniprot-TrEMBL)
RHEB:GTPComplexR-HSA-165189 (Reactome)
RPTOR ProteinQ8N122 (Uniprot-TrEMBL)
RRAGA ProteinQ7L523 (Uniprot-TrEMBL)
RRAGB ProteinQ5VZM2 (Uniprot-TrEMBL)
RRAGC ProteinQ9HB90 (Uniprot-TrEMBL)
RRAGD ProteinQ9NQL2 (Uniprot-TrEMBL)
SEC13 ProteinP55735 (Uniprot-TrEMBL)
SEH1L ProteinQ96EE3 (Uniprot-TrEMBL)
SESN1 ProteinQ9Y6P5 (Uniprot-TrEMBL)
SESN1,2:L-LeuComplexR-HSA-9639290 (Reactome)
SESN2 ProteinP58004 (Uniprot-TrEMBL)
SH3BP4ProteinQ9P0V3 (Uniprot-TrEMBL)
SLC38A9 ProteinQ8NBW4 (Uniprot-TrEMBL)
SLC38A9:L-ArgComplexR-HSA-9640172 (Reactome)
SZT2 ProteinQ5T011 (Uniprot-TrEMBL)
TCIRG1 ProteinQ13488 (Uniprot-TrEMBL)
WDR24 ProteinQ96S15 (Uniprot-TrEMBL)
WDR59 ProteinQ6PJI9 (Uniprot-TrEMBL)
mTORC1ComplexR-HSA-377400 (Reactome)
v-ATPase:Ragulator:RRAGA,B:GDP:RRAGC,D:GDP:SLC38A9:ArgComplexR-HSA-9640192 (Reactome)
v-ATPase:Ragulator:RRAGA,B:GDP:RRAGC,D:GDP:mTORC1:RHEB:GTPComplexR-HSA-9646465 (Reactome)
v-ATPase:Ragulator:RRAGA,B:GDP:RRAGC,D:GDPComplexR-HSA-9640184 (Reactome)
v-ATPase:Ragulator:RRAGA,B:GDP:RRAGC,D:GTPComplexR-HSA-9640174 (Reactome)
v-ATPase:Ragulator:RRAGA,B:GTP:RRAGC,D:GDP:SLC38A9:ArgComplexR-HSA-9639283 (Reactome)
v-ATPase:Ragulator:RRAGA,B:GTP:RRAGC,D:GDP:mTORC1:RHEB:GTPComplexR-HSA-9646467 (Reactome)
v-ATPase:Ragulator:RRAGA,B:GTP:RRAGC,D:GDP:mTORC1ComplexR-HSA-9645607 (Reactome)
v-ATPase:Ragulator:RRAGA,B:GTP:RRAGC,D:GDPComplexR-HSA-9639277 (Reactome)

Annotated Interactions

View all...
SourceTargetTypeDatabase referenceComment
AdoMetR-HSA-9640254 (Reactome)
BMT2:AdoMetArrowR-HSA-9640254 (Reactome)
CASTOR1:L-Arg dimerArrowR-HSA-9657619 (Reactome)
CASTOR1:L-Arg:CASTOR2ArrowR-HSA-9640237 (Reactome)
FLCN:FNIP1,2ArrowR-HSA-9645598 (Reactome)
GDPArrowR-HSA-9640167 (Reactome)
GDPR-HSA-9639286 (Reactome)
GTPArrowR-HSA-9639286 (Reactome)
GTPR-HSA-9640167 (Reactome)
KICSTOR:GATOR1:BMT2ArrowR-HSA-9640195 (Reactome)
KICSTOR:GATOR1:BMT2R-HSA-9640254 (Reactome)
KICSTOR:GATOR1:GATOR2:CASTOR1:CASTOR1ArrowR-HSA-9640195 (Reactome)
KICSTOR:GATOR1:GATOR2:CASTOR1:CASTOR1R-HSA-9657619 (Reactome)
KICSTOR:GATOR1:GATOR2:CASTOR1:CASTOR2ArrowR-HSA-9640195 (Reactome)
KICSTOR:GATOR1:GATOR2:CASTOR1:CASTOR2R-HSA-9640237 (Reactome)
KICSTOR:GATOR1:GATOR2:SESN1,2ArrowR-HSA-9640195 (Reactome)
KICSTOR:GATOR1:GATOR2:SESN1,2R-HSA-9639287 (Reactome)
KICSTOR:GATOR1:GATOR2ArrowR-HSA-9639287 (Reactome)
KICSTOR:GATOR1:GATOR2ArrowR-HSA-9640237 (Reactome)
KICSTOR:GATOR1:GATOR2ArrowR-HSA-9657619 (Reactome)
KICSTOR:GATOR1:GATOR2TBarR-HSA-9640195 (Reactome)
KICSTOR:GATOR1ArrowR-HSA-9640254 (Reactome)
L-ArgR-HSA-9640237 (Reactome)
L-ArgR-HSA-9657619 (Reactome)
L-LeuR-HSA-9639287 (Reactome)
PiArrowR-HSA-9640195 (Reactome)
PiArrowR-HSA-9645598 (Reactome)
R-HSA-9639286 (Reactome) The Ragulator complex acts as an unconventional guanyl nucleotide exchange factor (GEF) that ejects GTP from RRAGC and, by inference, RRAGD (Shen and Sabatini 2018). (Other known GEFs cause ejection of GDP rather than GTP from their targets.) The GDP-bound form of RRAGC,D is the active form that recruits mTORC1 to the lysosomal membrane.
R-HSA-9639287 (Reactome) SESN2 (Sestrin2) and SESN1 (Sestrin1) each interact with the GATOR2 complex in the absence of leucine and, upon binding leucine, dissociate from the GATOR2 complex (Chantranupong et al. 2014, Parmigiani et al. 2014, Kim et al. 2015, Wolfson et al. 2016, Saxton et al. 2016). (SESN3 constitutively binds GATOR2 in the presence and absence of leucine.) When bound to GATOR2, the Sestrins appear to prevent GATOR2 from inhibiting GATOR1, a GTPase activator which negatively regulates mTORC1 activation by increasing the rate of hydrolysis of RRAGA,B:GTP to RRAGA,B:GDP. SESN1,2 complexed with GATOR2 therefore allows GATOR1 to maintain mTORC1 in the inactive state (Chantranupong et al. 2014, Parmigiani et al. 2014, Kim et al. 2015). L-leucine binds SESN1,2 and causes SESN1,2 to dissociate from GATOR2, allowing GATOR2 to inhibit GATOR1 and thereby maintain RRAGA,B in the active (GTP-bound) state (Wolfson et al. 2016, Saxton et al. 2016). GATOR1 is recruited to the lysosomal membrane by the KICSTOR complex (Wolfson et al. 2017, Peng et al. 2017).
Sestrins also appear to interact with the Rag heterodimer (Peng et al. 2014) though the interaction may be indirect (Budanov 2015).
R-HSA-9640167 (Reactome) Upon binding L-arginine, SLC38A9 acts as a guanyl nucleotide exchange factor (GEF) that enhances the conversion of RRAGA:GDP (RagA:GDP, and by inference RRAGB:GDP, RagB:GDP) to RRAGA:GTP, the active form (Shen and Sabatini 2018). The Ragulator complex also shows GEF activity for RRAGA,B (Bar-Peled et al. 2012). SH3BP4 inhibits loading of GTP onto RRAGB during amino acid starvation (Kim et al. 2012). The binding of GTP by RRAGA,B appears to inhibit binding of GTP by RRAGC,D (Shen et al. 2017).
R-HSA-9640168 (Reactome) RRAGA:GTP (RagA:GTP) binds poorly to SLC38A9, therefore SLC39A9 is believed to dissociate from RRAGA:GTP after RRAGA exchanges GDP for GTP (Shen and Sabatini 2018). In this way one molecule of SLC38A9 can enhance the exchange of GDP for GTP for many molecules of RRAGA (Shen and Sabatini 2018).
R-HSA-9640175 (Reactome) The N-terminal domain of SLC38A9 bound to L-arginine interacts indirectly with the Ragulator complex via the Rag GTPases RRAGA and RRAGC (Wang et al. 2015, Rebsamen et al. 2015, Wyant et al. 2017, Shen and Sabatini 2018).
R-HSA-9640195 (Reactome) The GTPase activity of RRAGA,B hydrolyzes GTP to GDP (Bar-Peled et al. 2013). RRAGA and RRAGB lack detectable GTPase activity in the absence of a GTPase activating protein (Schurmann et al. 1995). The NPRL2 subunit of the GATOR1 complex acts as a GTPase activator of RRAGA,B and thereby controls the guanyl nucleotide bound to RRAGA,B (Bar-Peled et al. 2013, Shen et al. 2019). GATOR2 antagonizes GATOR1 (Bar-Peled et al. 2013). During amino acid deficiency, Sestrins (SESN1 and SESN2) (Chantranupong et al. 2014, Parmigiani et al. 2014, Peng et al. 2014, Kim et al. 2015, Wolfson et al. 2016, Saxton et al. 2016) and CASTOR1 (Chantranupong et al. 2016, Saxton et al. 2016, Gai et al. 2016, Xia et al. 2016) bound to GATOR2 prevent GATOR2 from antagonizing GATOR1 (Bar-Peled et al. 2013). BMT2 (SAMTOR) bound to GATOR1 enhances inhibition of mTORC1 activation by GATOR1 (Gu et al. 2017).
R-HSA-9640237 (Reactome) CASTOR1 in a heterodimer with CASTOR2 interacts with the GATOR2 complex via the MIOS subunit of GATOR2 (Chantranupong et al. 2016, Gai et al. 2016). The ACT domains of the CASTOR1 subunit bind L-arginine (Chantranupong et al. 2016, Saxton et al. 2016, Xia et al. 2016, Gai et al. 2016) and CASTOR1:arginine dissociates from GATOR2, which then prevents GATOR1 from activating the GTPase of RRAGA,B (Chantranupong et al. 2016). GATOR1 is recruited to the lysosomal membrane by the KICSTOR complex (Wolfson et al. 2017).
R-HSA-9640254 (Reactome) BMT2 (SAMTOR) binds GATOR1 and acts upstream of GATOR1 and KICSTOR to inhibit mTORC1 activation (Gu et al. 2017). Upon binding S-adenosymethionine, a metabolic derivative of the amino acid methionine, SAMTOR dissociates from GATOR1 and mTORC1 activity is increased through an uncharacterized mechanism (Gu et al. 2017). GATOR1 is recruited to the lysosomal membrane by the KICSTOR complex (Wolfson et al. 2017).
R-HSA-9645598 (Reactome) RRAGC (RagC) and RRAGD (RagD) are guanyl nucleotide-binding proteins that hydrolyze GTP (Tsun et al. 2013, Shen et al. 2017). The GDP-bound form of RRAGC,D is the active form that recruits mTORC1 to the lysosomal membrane (Tsun et al. 2013). RRAGC,D forms a heterodimer with RRAGA,B that has two stable conformations: RRAGA,B:GTP:RRAGC,D:GDP (active) or RRAGA,B:GDP:RRAGC,D:GTP (inactive) (Shen et al. 2017). Folliculin (FLCN) complexed with FNIP1 or FNIP2 interacts with RRAGA (Petit et al. 2013) and acts as a GTPase activator (GAP) for RRAGC:GTP and RRAGD:GTP (Tsun et al. 2013). FLCN is located at the lysosomal membrane during amino acid starvation and in the cytosol during amino acid stimulation (Tsun et al. 2013).
R-HSA-9645608 (Reactome) The heterodimer comprising RRAGA,B:GTP and RRAGC,D:GDP (RagA:GTP or RagB:GTP complexed with RagC:GDP or RagD:GDP) forms the active conformation of the Rag complex that recruits the mTORC1 complex from the cytosol to the lysosomal membrane (Kim et al. 2008, Sancak et al. 2008, Sancak et al. 2010) where RHEB activates the protein kinase activity of mTORC1. Hydrolysis of ATP by the v-ATPase complex is also required for recruitment of mTORC1 (Zoncu et al. 2011). The active state of the RRAGA,B:RRAGC,D heterodimer is less stably associated with the Ragulator complex and appears to cycle with mTORC1 between the lysosomal membrane and the cytosol (Lawrence et al. 2018). The cycling may provide a mechanism for attenuating mTORC1 signaling.
R-HSA-9646468 (Reactome) RHEB:GTP interacts with mTORC1 and activates the kinase activity of mTORC1 (Long et al. 2005, Tee et al. 2005, Long et al. 2007, Yang et al. 2017). RHEB binds the catalytic domain of the MTOR subunit of the mTORC1 complex (Long et al. 2005, Yang et al. 2017). The interaction of RHEB with mTORC1 is independent of the guanyl nucleotide bound by RHEB while the activation of MTOR is dependent on GTP bound to RHEB (Long et al. 2005). The binding of MTOR to RHEB is dependent on amino acid sufficiency (Long et al. 2005) due to association of mTORC1 with the Rag heterodimer at the lysosomal membrane.
R-HSA-9657619 (Reactome) The CASTOR1 homodimer interacts with the GATOR2 complex via the MIOS subunit of GATOR2 (Chantranupong et al. 2016, Gai et al. 2016). The ACT domains of CASTOR1 bind L-arginine (Chantranupong et al. 2016, Saxton et al. 2016, Xia et al. 2016, Gai et al. 2016) and CASTOR1:arginine dissociates from GATOR2, which then prevents GATOR1 from activating the GTPase of RRAGA,B (Chantranupong et al. 2016). GATOR1 is recruited to the lysosomal membrane by the KICSTOR complex (Wolfson et al. 2017).
RHEB:GTPR-HSA-9646468 (Reactome)
SESN1,2:L-LeuArrowR-HSA-9639287 (Reactome)
SH3BP4TBarR-HSA-9640167 (Reactome)
SLC38A9:L-ArgArrowR-HSA-9640168 (Reactome)
SLC38A9:L-ArgR-HSA-9640175 (Reactome)
mTORC1R-HSA-9645608 (Reactome)
v-ATPase:Ragulator:RRAGA,B:GDP:RRAGC,D:GDP:SLC38A9:ArgArrowR-HSA-9640175 (Reactome)
v-ATPase:Ragulator:RRAGA,B:GDP:RRAGC,D:GDP:SLC38A9:ArgR-HSA-9640167 (Reactome)
v-ATPase:Ragulator:RRAGA,B:GDP:RRAGC,D:GDP:SLC38A9:Argmim-catalysisR-HSA-9640167 (Reactome)
v-ATPase:Ragulator:RRAGA,B:GDP:RRAGC,D:GDP:mTORC1:RHEB:GTPArrowR-HSA-9640195 (Reactome)
v-ATPase:Ragulator:RRAGA,B:GDP:RRAGC,D:GDPArrowR-HSA-9639286 (Reactome)
v-ATPase:Ragulator:RRAGA,B:GDP:RRAGC,D:GDPArrowR-HSA-9645598 (Reactome)
v-ATPase:Ragulator:RRAGA,B:GDP:RRAGC,D:GDPR-HSA-9640175 (Reactome)
v-ATPase:Ragulator:RRAGA,B:GDP:RRAGC,D:GTPR-HSA-9639286 (Reactome)
v-ATPase:Ragulator:RRAGA,B:GDP:RRAGC,D:GTPR-HSA-9645598 (Reactome)
v-ATPase:Ragulator:RRAGA,B:GDP:RRAGC,D:GTPmim-catalysisR-HSA-9639286 (Reactome)
v-ATPase:Ragulator:RRAGA,B:GDP:RRAGC,D:GTPmim-catalysisR-HSA-9645598 (Reactome)
v-ATPase:Ragulator:RRAGA,B:GTP:RRAGC,D:GDP:SLC38A9:ArgArrowR-HSA-9640167 (Reactome)
v-ATPase:Ragulator:RRAGA,B:GTP:RRAGC,D:GDP:SLC38A9:ArgR-HSA-9640168 (Reactome)
v-ATPase:Ragulator:RRAGA,B:GTP:RRAGC,D:GDP:mTORC1:RHEB:GTPArrowR-HSA-9646468 (Reactome)
v-ATPase:Ragulator:RRAGA,B:GTP:RRAGC,D:GDP:mTORC1:RHEB:GTPR-HSA-9640195 (Reactome)
v-ATPase:Ragulator:RRAGA,B:GTP:RRAGC,D:GDP:mTORC1:RHEB:GTPmim-catalysisR-HSA-9640195 (Reactome)
v-ATPase:Ragulator:RRAGA,B:GTP:RRAGC,D:GDP:mTORC1ArrowR-HSA-9645608 (Reactome)
v-ATPase:Ragulator:RRAGA,B:GTP:RRAGC,D:GDP:mTORC1R-HSA-9646468 (Reactome)
v-ATPase:Ragulator:RRAGA,B:GTP:RRAGC,D:GDPArrowR-HSA-9640168 (Reactome)
v-ATPase:Ragulator:RRAGA,B:GTP:RRAGC,D:GDPR-HSA-9645608 (Reactome)
Personal tools