WikiPathways:NewPathwayReleases
From WikiPathways
(Difference between revisions)
(March release) |
Current revision (20:35, 10 January 2023) (view source) (Jan 2023) |
||
| (22 intermediate revisions not shown.) | |||
| Line 1: | Line 1: | ||
'''Each month there are new pathways reviewed and approved for the official release of WikiPathways. See the [[Download_Pathways|Download Page]] to access the full collection.''' | '''Each month there are new pathways reviewed and approved for the official release of WikiPathways. See the [[Download_Pathways|Download Page]] to access the full collection.''' | ||
| - | === | + | ===January 2023=== |
{| style="margin: 10px; background-color:#E4EEF2" | {| style="margin: 10px; background-color:#E4EEF2" | ||
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5077|250px||Response to acute ibuprofen exposure (Daphnia magna)}} |
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5276|250px||Estrogen metabolism (Homo sapiens)}} |
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5299|250px||Ganglio series sphingolipid metabolism (Homo sapiens)}} |
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5303|250px||Lacto series sphingolipid metabolism (Homo sapiens)}} |
|- | |- | ||
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5280|250px||Glucocorticoid biosynthesis (Homo sapiens)}} |
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5290|250px||Lipid remodeling (Anopheles gambiae)}} |
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5292|250px||Glycosphingolipid metabolism (Homo sapiens)}} |
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5277|250px||Steroid hormone precursor biosynthesis (Homo sapiens)}} |
| + | |- | ||
| + | |width=100px|{{#pwImage:Pathway:WP5300|250px||TROP2 regulatory signaling (Homo sapiens)}} | ||
| + | |width=100px|{{#pwImage:Pathway:WP5302|250px||Neolacto series sphingolipid metabolism (Homo sapiens)}} | ||
| + | |width=100px|{{#pwImage:Pathway:WP5279|250px||Mineralocorticoid biosynthesis (Homo sapiens)}} | ||
|} | |} | ||
| - | === | + | ===December 2022=== |
{| style="margin: 10px; background-color:#E4EEF2" | {| style="margin: 10px; background-color:#E4EEF2" | ||
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5218|250px||Extrafollicular and follicular B cell activation by SARS-CoV-2 (Homo sapiens)}} |
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
|} | |} | ||
| - | === | + | ===November 2022=== |
{| style="margin: 10px; background-color:#E4EEF2" | {| style="margin: 10px; background-color:#E4EEF2" | ||
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5078|250px||T cell modulation in pancreatic cancer (Homo sapiens)}} |
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5155|250px||Arachidonic acid (AA, ARA) oxylipin metabolism (Homo sapiens)}} |
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5236|250px||Markers of kidney cell lineage (Homo sapiens)}} |
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5242|250px||Comprehensive IL-17A signaling pathway (Mus musculus)}} |
| + | |- | ||
| + | |width=100px|{{#pwImage:Pathway:WP5284|250px||Cell interactions of the pancreatic cancer microenvironment (Homo sapiens)}} | ||
| + | |width=100px|{{#pwImage:Pathway:WP5287|250px||17q12 copy number variation syndrome (Homo sapiens)}} | ||
| + | |width=100px|{{#pwImage:Pathway:WP4936|250px||Perturbations to host-cell autophagy, induced by SARS-CoV-2 proteins (Homo sapiens)}} | ||
| + | |width=100px|{{#pwImage:Pathway:WP5294|250px||Sildenafil treatment (Homo sapiens)}} | ||
|} | |} | ||
| - | === | + | ===October 2022=== |
{| style="margin: 10px; background-color:#E4EEF2" | {| style="margin: 10px; background-color:#E4EEF2" | ||
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5283|250px||Chronic hyperglycemia impairment of neuron function (Homo sapiens)}} |
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5237|250px||Serotonin reuptake inhibitor response (Daphnia magna)}} |
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5256|250px||Endothelial cell senescence (Homo sapiens)}} |
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5275|250px||Ether lipid biosynthesis (Homo sapiens)}} |
|- | |- | ||
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5091|250px||Frustrated phagocytosis leading to malignant pleural mesothelioma (Homo sapiens)}} |
| + | |width=100px|{{#pwImage:Pathway:WP5285|250px||Immune infiltration in pancreatic cancer (Homo sapiens)}} | ||
|} | |} | ||
| - | === | + | ===September 2022=== |
{| style="margin: 10px; background-color:#E4EEF2" | {| style="margin: 10px; background-color:#E4EEF2" | ||
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP782|250px||Triacylglyceride synthesis (Gallus gallus)}} |
| - | + | ||
| - | + | ||
| - | + | ||
|} | |} | ||
| - | === | + | ===August 2022=== |
{| style="margin: 10px; background-color:#E4EEF2" | {| style="margin: 10px; background-color:#E4EEF2" | ||
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5231|250px||Hippocampal synaptogenesis and neurogenesis (Homo sapiens)}} |
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5233|250px||Arsenic metabolism and reactive oxygen species generation (Homo sapiens)}} |
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5234|250px||Bardet-Biedl syndrome (Homo sapiens)}} |
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5235|250px||Estradiol regulation in Porto-Sinusoidal Vascular Disease (Homo sapiens)}} |
| + | |- | ||
| + | |width=100px|{{#pwImage:Pathway:WP5238|250px||Cholestasis (Homo sapiens)}} | ||
| + | |width=100px|{{#pwImage:Pathway:WP5265|250px||Neurogenesis regulation in the olfactory epithelium (Homo sapiens)}} | ||
| + | |width=100px|{{#pwImage:Pathway:WP5269|250px||Genetic causes of PSVD/INCPH (Homo sapiens)}} | ||
| + | |width=100px|{{#pwImage:Pathway:WP5271|250px||Bacterial ceramide synthesis (Caulobacter vibrioides)}} | ||
|- | |- | ||
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5272|250px||LDL- influence on CD14 and TLR4 (Homo sapiens)}} |
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5273|250px||Effect of intestinal microbiome on anticoagulant response of Vitamin K antagonists (Homo sapiens)}} |
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5274|250px||Farnesyl to CoQ10 metabolism (Homo sapiens)}} |
|} | |} | ||
| - | === | + | ===July 2022=== |
{| style="margin: 10px; background-color:#E4EEF2" | {| style="margin: 10px; background-color:#E4EEF2" | ||
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5239|250px||Lac-Phe pathway (Homo sapiens)}} |
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5240|250px||Lac-Phe pathway (Mus musculus)}} |
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5241|250px||Mitochondrial beta oxidation (Homo sapiens)}} |
|} | |} | ||
| - | === | + | ===June 2022=== |
{| style="margin: 10px; background-color:#E4EEF2" | {| style="margin: 10px; background-color:#E4EEF2" | ||
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5221|250px||2q11.2 copy number variation syndrome (Homo sapiens)}} |
|} | |} | ||
| - | === | + | ===May 2022=== |
{| style="margin: 10px; background-color:#E4EEF2" | {| style="margin: 10px; background-color:#E4EEF2" | ||
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP4686|250px||Leucine, isoleucine and valine metabolism (Homo sapiens)}} |
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5220|250px||Metabolic reprogramming in pancreatic cancer (Homo sapiens)}} |
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5222|250px||2q13 copy number variation syndrome (Homo sapiens)}} |
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5223|250px||2q21.1 copy number variation syndrome (Homo sapiens)}} |
| + | |- | ||
| + | |width=100px|{{#pwImage:Pathway:WP5224|250px||2q37 copy number variation syndrome (Homo sapiens)}} | ||
|} | |} | ||
| - | === | + | ===April 2022=== |
{| style="margin: 10px; background-color:#E4EEF2" | {| style="margin: 10px; background-color:#E4EEF2" | ||
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5154|250px||Docosahexaenoic acid (DHA) oxylipin metabolism (Homo sapiens)}} |
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5171|250px||Metabolic pathway leukotriene (Homo sapiens)}} |
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5180|250px||DYRK1A (Homo sapiens)}} |
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5181|250px||Roles of ceramides in the development of insulin resistance (Homo sapiens)}} |
|- | |- | ||
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5182|250px||Pro-survival signaling of neuroprotectin D1 (Homo sapiens)}} |
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5186|250px||Activation of Vitamin K-dependent proteins (Homo sapiens)}} |
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5188|250px||Retinol Metabolism (Homo sapiens)}} |
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5190|250px||Creatine Pathway (Homo sapiens)}} |
|- | |- | ||
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5191|250px||ResolvinE1 and ResolvinD1 signaling pathways promoting inflammation resolution (Homo sapiens)}} |
| + | |width=100px|{{#pwImage:Pathway:WP5192|250px||Modulation of the PI3K-Akt-mTOR signaling by bioactive sphingolipids (Homo sapiens)}} | ||
| + | |width=100px|{{#pwImage:Pathway:WP5193|250px||Cholesterol synthesis disorders (Homo sapiens)}} | ||
| + | |width=100px|{{#pwImage:Pathway:WP5194|250px||Synthesis of ceramides and 1-deoxyceramides (Homo sapiens)}} | ||
| + | |- | ||
| + | |width=100px|{{#pwImage:Pathway:WP5196|250px||N-Glycan biosynthesis (Sheep) (Ovis aries)}} | ||
| + | |width=100px|{{#pwImage:Pathway:WP5199|250px||PtdIns(4,5)P2 in cytokinesis pathway (Homo sapiens)}} | ||
| + | |width=100px|{{#pwImage:Pathway:WP5200|250px||Dravet syndrome (Homo sapiens)}} | ||
| + | |width=100px|{{#pwImage:Pathway:WP5201|250px||Phospholipid biosynthesis (Saccharomyces cerevisiae)}} | ||
| + | |- | ||
| + | |width=100px|{{#pwImage:Pathway:WP5202|250px||Alstrom syndrome (Homo sapiens)}} | ||
| + | |width=100px|{{#pwImage:Pathway:WP5205|250px||Clocked controlled autophagy in bone metabolism (Homo sapiens)}} | ||
| + | |width=100px|{{#pwImage:Pathway:WP5211|250px||Glucose metabolism in triple-negative breast cancer cells (Homo sapiens)}} | ||
| + | |width=100px|{{#pwImage:Pathway:WP5213|250px||Amino acid metabolism in triple-negative breast cancer cells (Homo sapiens)}} | ||
| + | |- | ||
| + | |width=100px|{{#pwImage:Pathway:WP5218|250px||Extrafollicular B cell activation by SARS-CoV-2 (Homo sapiens)}} | ||
|} | |} | ||
| - | === | + | ===March 2022=== |
{| style="margin: 10px; background-color:#E4EEF2" | {| style="margin: 10px; background-color:#E4EEF2" | ||
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5130|250px||Th17 cell differentiation pathway (Homo sapiens)}} |
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5136|250px||ALA oxylipin metabolism (Homo sapiens)}} |
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5137|250px||Linoleic acid oxylipin metabolism (Homo sapiens)}} |
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5143|250px||GDNF signaling (Homo sapiens)}} |
|- | |- | ||
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5149|250px||Lipid metabolism in senescent cells (Homo sapiens)}} |
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5166|250px||Glyoxylate metabolism (Homo sapiens)}} |
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5169|250px||Hemesynthesis defects and porphyrias (Homo sapiens)}} |
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5173|250px||Disorders of galactose metabolism (Homo sapiens)}} |
|- | |- | ||
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5174|250px||Ulcerative colitis signaling (Homo sapiens)}} |
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5175|250px||Disorders in ketone body synthesis (Homo sapiens)}} |
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5176|250px||Disorders of bile acid synthesis and biliary transport (Homo sapiens)}} |
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5178|250px||Disorders of fructose metabolism (Homo sapiens)}} |
|- | |- | ||
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5179|250px||Biosynthesis and turnover of 1-deoxy-sphingoid bases (Homo sapiens)}} |
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5183|250px||SARS-CoV-2 Mediated Endothelial Dysfunction: The Potential Role of Chronic Oxidative Stress in the mitochondria (Homo sapiens)}} |
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5187|250px||mRNA vaccine activation of Dendritic cell and induction of IFN-1 (Homo sapiens)}} |
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5189|250px||Copper metabolism (Homo sapiens)}} |
|- | |- | ||
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5195|250px||Disorders in Ketolysis (Homo sapiens)}} |
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5198|250px||Inflammatory bowel disease signaling (Homo sapiens)}} |
|} | |} | ||
| - | === | + | ===January 2022=== |
{| style="margin: 10px; background-color:#E4EEF2" | {| style="margin: 10px; background-color:#E4EEF2" | ||
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP722|250px||Serotonin HTR1 group and FOS pathway (Homo sapiens)}} |
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP2152|250px||BDNF pathway (Mus musculus)}} |
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP2435|250px||Quercetin and Nf-kB / AP-1 induced apoptosis (Homo sapiens)}} |
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP3953|250px||mRNA, protein, and metabolite inducation pathway by cyclosporin A (Homo sapiens)}} |
|- | |- | ||
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP4238|250px||Flavan-3-ol metabolic pathway (Homo sapiens)}} |
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP4316|250px||miRNA degrading enzymes (Homo sapiens)}} |
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP4630|250px||Measles virus infection (Homo sapiens)}} |
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5133|250px||Non-classical role of vitamin D (Homo sapiens)}} |
|- | |- | ||
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5156|250px||SARS-CoV-2 replication organelle formation (Homo sapiens)}} |
| - | |width=100px|{{#pwImage:Pathway: | + | |} |
| - | |width=100px|{{#pwImage:Pathway: | + | ===December 2021=== |
| - | |width=100px|{{#pwImage:Pathway: | + | {| style="margin: 10px; background-color:#E4EEF2" |
| + | |width=100px|{{#pwImage:Pathway:WP4941|250px||GPR143 in melanocytes and retinal pigment epithelium cells (Homo sapiens)}} | ||
| + | |width=100px|{{#pwImage:Pathway:WP5043|250px||Pentose phosphate pathway in senescent cells (Homo sapiens)}} | ||
| + | |width=100px|{{#pwImage:Pathway:WP5070|250px||Salmonella virulence regulatory network (Escherichia coli)}} | ||
| + | |width=100px|{{#pwImage:Pathway:WP5144|250px||NRP1-triggered signaling pathways in pancreatic cancer (Homo sapiens)}} | ||
| + | |} | ||
| + | ===September 2021=== | ||
| + | {| style="margin: 10px; background-color:#E4EEF2" | ||
| + | |width=100px|{{#pwImage:Pathway:WP5085|250px||Vasopressin-regulated water reabsorption (Homo sapiens)}} | ||
| + | |} | ||
| + | ===August 2021=== | ||
| + | {| style="margin: 10px; background-color:#E4EEF2" | ||
| + | |width=100px|{{#pwImage:Pathway:WP5036|250px||Angiotensin II receptor type 1 pathway (Homo sapiens)}} | ||
| + | |width=100px|{{#pwImage:Pathway:WP5055|250px||Burn wound healing (Homo sapiens)}} | ||
| + | |width=100px|{{#pwImage:Pathway:WP5056|250px||Burn Wound Healing (Mus musculus)}} | ||
| + | |width=100px|{{#pwImage:Pathway:WP5087|250px||Malignant pleural mesothelioma (Homo sapiens)}} | ||
|- | |- | ||
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5057|250px||Burn wound healing (Rattus norvegicus)}} |
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5089|250px||Kinin-Kallikrein pathway (Homo sapiens)}} |
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5115|250px||Network map of SARS-CoV-2 signaling pathway (Homo sapiens)}} |
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5118|250px||SMC1/SMC3 role in DNA damage - Cornelia de Lange Syndrome (Homo sapiens)}} |
|- | |- | ||
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5088|250px||Prostaglandin signaling (Homo sapiens)}} |
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5094|250px||Orexin receptor pathway (Homo sapiens)}} |
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5095|250px||Overview of proinflammatory and profibrotic mediators (Homo sapiens)}} |
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5097|250px||CCL18 signaling pathway (Homo sapiens)}} |
|- | |- | ||
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5114|250px||Nucleotide excision repair in xeroderma pigmentosum (Homo sapiens)}} |
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5117|250px||Cohesin complex - Cornelia de Lange syndrome (Homo sapiens)}} |
| + | |width=100px|{{#pwImage:Pathway:WP5119|250px||NIPBL role in DNA damage - Cornelia de Lange syndrome (Homo sapiens)}} | ||
| + | |width=100px|{{#pwImage:Pathway:WP5121|250px||Sphingolipid metabolism in senescence (Homo sapiens)}} | ||
| + | |- | ||
| + | |width=100px|{{#pwImage:Pathway:WP5122|250px||Prostaglandin and leukotriene metabolism in senescence (Homo sapiens)}} | ||
| + | |width=100px|{{#pwImage:Pathway:WP5128|250px||Fibrin complement receptor 3 signaling pathway (Mus musculus)}} | ||
|} | |} | ||
| - | + | ===July 2021=== | |
| - | === | + | |
{| style="margin: 10px; background-color:#E4EEF2" | {| style="margin: 10px; background-color:#E4EEF2" | ||
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5023|250px||Hypoxia-dependent self-renewal of myoblasts (Mus musculus)}} |
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5024|250px||Hypoxia-dependent proliferation of myoblasts (Mus musculus)}} |
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5025|250px||Hypoxia-dependent differentiation of myoblasts (Mus musculus)}} |
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5120|250px||Inclusion body myositis (Homo sapiens)}} |
|- | |- | ||
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5108|250px||Familial hyperlipidemia type 1 (Homo sapiens)}} |
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5109|250px||Familial hyperlipidemia type 2 (Homo sapiens)}} |
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5110|250px||Familial hyperlipidemia type 3 (Homo sapiens)}} |
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5111|250px||Familial hyperlipidemia type 4 (Homo sapiens)}} |
|- | |- | ||
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5098|250px||T-cell activation SARS-CoV-2 (Homo sapiens)}} |
| + | |width=100px|{{#pwImage:Pathway:WP5101|250px||Congenital generalized lipodystrophy (CGL) (Homo sapiens)}} | ||
| + | |width=100px|{{#pwImage:Pathway:WP5102|250px||Familial partial lipodystrophy (FPLD) (Homo sapiens)}} | ||
| + | |width=100px|{{#pwImage:Pathway:WP5103|250px||Progeria-associated lipodystrophy (Homo sapiens)}} | ||
| + | |- | ||
| + | |width=100px|{{#pwImage:Pathway:WP5112|250px||Familial hyperlipidemia type 5 (Homo sapiens)}} | ||
| + | |width=100px|{{#pwImage:Pathway:WP5104|250px||Acquired partial lipodystrophy / Barraquer-Simons syndrome (Homo sapiens)}} | ||
| + | |width=100px|{{#pwImage:Pathway:WP5113|250px||Antiviral and anti-inflammatory effects of Nrf2 on SARS-CoV-2 pathway (Homo sapiens)}} | ||
| + | |width=100px|{{#pwImage:Pathway:WP5124|250px||Alzheimer's disease (Homo sapiens)}} | ||
| + | |- | ||
| + | |width=100px|{{#pwImage:Pathway:WP5116|250px||SARS-CoV-2 B.1.1.7 variant antagonises innate immune activation (Homo sapiens)}} | ||
| + | |width=100px|{{#pwImage:Pathway:WP5105|250px||Meta pathway lipodystrophy, dyslipidemia and hyperlipidemia (Homo sapiens)}} | ||
| + | |width=100px|{{#pwImage:Pathway:WP5092|250px||Interactions of natural killer cells in pancreatic cancer (Homo sapiens)}} | ||
|} | |} | ||
| - | + | ===June 2021=== | |
| - | === | + | |
{| style="margin: 10px; background-color:#E4EEF2" | {| style="margin: 10px; background-color:#E4EEF2" | ||
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5033|250px||Genes associated with the development of rheumatoid arthritis (Homo sapiens)}} |
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5083|250px||Neuroinflammation and glutamatergic signaling (Homo sapiens)}} |
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5090|250px||Complement system in neuronal development and plasticity (Homo sapiens)}} |
| + | |width=100px|{{#pwImage:Pathway:WP38|250px||Fatty acid biosynthesis (Caenorhabditis elegans)}} | ||
| + | |- | ||
| + | |width=100px|{{#pwImage:Pathway:WP810|250px||Hepatocyte growth factor receptor signaling (Gallus gallus)}} | ||
| + | |width=100px|{{#pwImage:Pathway:WP927|250px||Hepatocyte growth factor receptor signaling (Pan troglodytes)}} | ||
| + | |width=100px|{{#pwImage:Pathway:WP1162|250px||Hepatocyte growth factor receptor signaling (Canis familiaris)}} | ||
| + | |width=100px|{{#pwImage:Pathway:WP1198|250px||S1P receptor signal transduction (Canis familiaris)}} | ||
|} | |} | ||
| - | === | + | ===May 2021=== |
{| style="margin: 10px; background-color:#E4EEF2" | {| style="margin: 10px; background-color:#E4EEF2" | ||
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP4688|250px||Serine Metabolism (Homo sapiens)}} |
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5060|250px||Peptidoglycan cytoplasmic synthesis and recycling pathways (Escherichia coli)}} |
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5066|250px||FOXA2 pathway (Homo sapiens)}} |
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5072|250px||Modulators of TCR signaling and T cell activation (Homo sapiens)}} |
|- | |- | ||
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5074|250px||Kallmann's Syndrome (Homo sapiens)}} |
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5061|250px||Fatty acid transporters (Homo sapiens)}} |
| - | |width=100px|{{#pwImage:Pathway: | + | |} |
| - | |width=100px|{{#pwImage:Pathway: | + | ===April 2021=== |
| + | {| style="margin: 10px; background-color:#E4EEF2" | ||
| + | |width=100px|{{#pwImage:Pathway:WP5063|250px||FOXP3 in COVID-19 (Homo sapiens)}} | ||
| + | |width=100px|{{#pwImage:Pathway:WP5065|250px||SARS-CoV-2 altering angiogenesis via NRP1 (Homo sapiens)}} | ||
| + | |width=100px|{{#pwImage:Pathway:WP5076|250px||Soluble ACE2-mediated cell entry of SARS-CoV-2 (Homo sapiens)}} | ||
| + | |} | ||
| + | ===March 2021=== | ||
| + | {| style="margin: 10px; background-color:#E4EEF2" | ||
| + | |width=100px|{{#pwImage:Pathway:WP2839|250px||Hair Follicle Development: Organogenesis - Part 2 of 3 (Homo sapiens)}} | ||
| + | |width=100px|{{#pwImage:Pathway:WP4010|250px||Liver steatosis AOP (Homo sapiens)}} | ||
| + | |width=100px|{{#pwImage:Pathway:WP5027|250px||nsp1 from SARS-CoV-2 inhibits translation initiation in the host cell (Homo sapiens)}} | ||
| + | |width=100px|{{#pwImage:Pathway:WP5044|250px||Kynurenine Pathway and links to Cellular Senescence (Homo sapiens)}} | ||
|- | |- | ||
| - | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP5046|250px||NAD Metabolism in Oncogene-Induced Senescence and Mitochondrial Dysfunction-Associated Senescence (Homo sapiens)}} |
| + | |width=100px|{{#pwImage:Pathway:WP5052|250px||Nephrogenesis (Homo sapiens)}} | ||
| + | |width=100px|{{#pwImage:Pathway:WP5053|250px||Development of ureteric collection system (Homo sapiens)}} | ||
| + | |width=100px|{{#pwImage:Pathway:WP5064|250px||7-oxo-C and 7beta-HC pathways (Homo sapiens)}} | ||
|} | |} | ||
| + | ===February 2021=== | ||
| + | {| style="margin: 10px; background-color:#E4EEF2" | ||
| + | |width=100px|{{#pwImage:Pathway:WP4962|250px||Airway smooth muscle cell contraction (Homo sapiens)}} | ||
| + | |width=100px|{{#pwImage:Pathway:WP5038|250px||SARS-CoV-2 mitochondrial interactions (Homo sapiens)}} | ||
| + | |width=100px|{{#pwImage:Pathway:WP5039|250px||SARS-CoV-2 Innate Immunity Evasion and Cell-specific immune response (Homo sapiens)}} | ||
| + | |width=100px|{{#pwImage:Pathway:WP5049|250px||Glycolysis in senescence (Homo sapiens)}} | ||
| + | |- | ||
| + | |width=100px|{{#pwImage:Pathway:WP5050|250px||TCA cycle in senescence (Homo sapiens)}} | ||
| + | |} | ||
| + | ===January 2021=== | ||
| + | {| style="margin: 10px; background-color:#E4EEF2" | ||
| + | |width=100px|{{#pwImage:Pathway:WP4317|250px||Mitochondrial fatty acid synthesis pathway (Homo sapiens)}} | ||
| + | |width=100px|{{#pwImage:Pathway:WP5030|250px||Ethylmalonic Encephalopathy (Homo sapiens)}} | ||
| + | |width=100px|{{#pwImage:Pathway:WP5031|250px||Biotin Metabolism (including IEMs) (Homo sapiens)}} | ||
| + | |width=100px|{{#pwImage:Pathway:WP5037|250px||Riboflavin and CoQ disorders (Homo sapiens)}} | ||
| + | |} | ||
| + | |||
=== Prior Years === | === Prior Years === | ||
| + | * [[WikiPathways:NewPathwayReleases2020|2020]] | ||
* [[WikiPathways:NewPathwayReleases2019|2019]] | * [[WikiPathways:NewPathwayReleases2019|2019]] | ||
* [[WikiPathways:NewPathwayReleases2018|2018]] | * [[WikiPathways:NewPathwayReleases2018|2018]] | ||
* [[WikiPathways:NewPathwayReleases2017|2017]] | * [[WikiPathways:NewPathwayReleases2017|2017]] | ||
Current revision
Each month there are new pathways reviewed and approved for the official release of WikiPathways. See the Download Page to access the full collection.
January 2023
|
Image does not exist Response to acute ibuprofen exposure (Daphnia magna) |
Image does not exist Estrogen metabolism (Homo sapiens) |
Image does not exist Ganglio series sphingolipid metabolism (Homo sapiens) |
Image does not exist Lacto series sphingolipid metabolism (Homo sapiens) |
|
Image does not exist Glucocorticoid biosynthesis (Homo sapiens) |
Image does not exist Lipid remodeling (Anopheles gambiae) |
Image does not exist Glycosphingolipid metabolism (Homo sapiens) |
Image does not exist Steroid hormone precursor biosynthesis (Homo sapiens) |
|
Image does not exist TROP2 regulatory signaling (Homo sapiens) |
Image does not exist Neolacto series sphingolipid metabolism (Homo sapiens) |
Image does not exist Mineralocorticoid biosynthesis (Homo sapiens) |
December 2022
|
Image does not exist Extrafollicular and follicular B cell activation by SARS-CoV-2 (Homo sapiens) |
November 2022
|
Image does not exist T cell modulation in pancreatic cancer (Homo sapiens) |
Image does not exist Arachidonic acid (AA, ARA) oxylipin metabolism (Homo sapiens) |
Image does not exist Markers of kidney cell lineage (Homo sapiens) |
Image does not exist Comprehensive IL-17A signaling pathway (Mus musculus) |
|
Image does not exist Cell interactions of the pancreatic cancer microenvironment (Homo sapiens) |
Image does not exist 17q12 copy number variation syndrome (Homo sapiens) |
Image does not exist Perturbations to host-cell autophagy, induced by SARS-CoV-2 proteins (Homo sapiens) |
Image does not exist Sildenafil treatment (Homo sapiens) |
October 2022
|
Image does not exist Chronic hyperglycemia impairment of neuron function (Homo sapiens) |
Image does not exist Serotonin reuptake inhibitor response (Daphnia magna) |
Image does not exist Endothelial cell senescence (Homo sapiens) |
Image does not exist Ether lipid biosynthesis (Homo sapiens) |
|
Image does not exist Frustrated phagocytosis leading to malignant pleural mesothelioma (Homo sapiens) |
Image does not exist Immune infiltration in pancreatic cancer (Homo sapiens) |
September 2022
|
Image does not exist Triacylglyceride synthesis (Gallus gallus) |
August 2022
|
Image does not exist Hippocampal synaptogenesis and neurogenesis (Homo sapiens) |
Image does not exist Arsenic metabolism and reactive oxygen species generation (Homo sapiens) |
Image does not exist Bardet-Biedl syndrome (Homo sapiens) |
Image does not exist Estradiol regulation in Porto-Sinusoidal Vascular Disease (Homo sapiens) |
|
Image does not exist Cholestasis (Homo sapiens) |
Image does not exist Neurogenesis regulation in the olfactory epithelium (Homo sapiens) |
Image does not exist Genetic causes of PSVD/INCPH (Homo sapiens) |
Image does not exist Bacterial ceramide synthesis (Caulobacter vibrioides) |
|
Image does not exist LDL- influence on CD14 and TLR4 (Homo sapiens) |
Image does not exist Effect of intestinal microbiome on anticoagulant response of Vitamin K antagonists (Homo sapiens) |
Image does not exist Farnesyl to CoQ10 metabolism (Homo sapiens) |
July 2022
|
Image does not exist Lac-Phe pathway (Homo sapiens) |
Image does not exist Lac-Phe pathway (Mus musculus) |
Image does not exist Mitochondrial beta oxidation (Homo sapiens) |
June 2022
|
Image does not exist 2q11.2 copy number variation syndrome (Homo sapiens) |
May 2022
|
Image does not exist Leucine, isoleucine and valine metabolism (Homo sapiens) |
Image does not exist Metabolic reprogramming in pancreatic cancer (Homo sapiens) |
Image does not exist 2q13 copy number variation syndrome (Homo sapiens) |
Image does not exist 2q21.1 copy number variation syndrome (Homo sapiens) |
|
Image does not exist 2q37 copy number variation syndrome (Homo sapiens) |
April 2022
|
Image does not exist Docosahexaenoic acid (DHA) oxylipin metabolism (Homo sapiens) |
Image does not exist Metabolic pathway leukotriene (Homo sapiens) |
Image does not exist DYRK1A (Homo sapiens) |
Image does not exist Roles of ceramides in the development of insulin resistance (Homo sapiens) |
|
Image does not exist Pro-survival signaling of neuroprotectin D1 (Homo sapiens) |
Image does not exist Activation of Vitamin K-dependent proteins (Homo sapiens) |
Image does not exist Retinol Metabolism (Homo sapiens) |
Image does not exist Creatine Pathway (Homo sapiens) |
|
Image does not exist ResolvinE1 and ResolvinD1 signaling pathways promoting inflammation resolution (Homo sapiens) |
Image does not exist Modulation of the PI3K-Akt-mTOR signaling by bioactive sphingolipids (Homo sapiens) |
Image does not exist Cholesterol synthesis disorders (Homo sapiens) |
Image does not exist Synthesis of ceramides and 1-deoxyceramides (Homo sapiens) |
|
Image does not exist N-Glycan biosynthesis (Sheep) (Ovis aries) |
Image does not exist PtdIns(4,5)P2 in cytokinesis pathway (Homo sapiens) |
Image does not exist Dravet syndrome (Homo sapiens) |
Image does not exist Phospholipid biosynthesis (Saccharomyces cerevisiae) |
|
Image does not exist Alstrom syndrome (Homo sapiens) |
Image does not exist Clocked controlled autophagy in bone metabolism (Homo sapiens) |
Image does not exist Glucose metabolism in triple-negative breast cancer cells (Homo sapiens) |
Image does not exist Amino acid metabolism in triple-negative breast cancer cells (Homo sapiens) |
|
Image does not exist Extrafollicular B cell activation by SARS-CoV-2 (Homo sapiens) |
March 2022
|
Image does not exist Th17 cell differentiation pathway (Homo sapiens) |
Image does not exist ALA oxylipin metabolism (Homo sapiens) |
Image does not exist Linoleic acid oxylipin metabolism (Homo sapiens) |
Image does not exist GDNF signaling (Homo sapiens) |
|
Image does not exist Lipid metabolism in senescent cells (Homo sapiens) |
Image does not exist Glyoxylate metabolism (Homo sapiens) |
Image does not exist Hemesynthesis defects and porphyrias (Homo sapiens) |
Image does not exist Disorders of galactose metabolism (Homo sapiens) |
|
Image does not exist Ulcerative colitis signaling (Homo sapiens) |
Image does not exist Disorders in ketone body synthesis (Homo sapiens) |
Image does not exist Disorders of bile acid synthesis and biliary transport (Homo sapiens) |
Image does not exist Disorders of fructose metabolism (Homo sapiens) |
|
Image does not exist Biosynthesis and turnover of 1-deoxy-sphingoid bases (Homo sapiens) |
Image does not exist SARS-CoV-2 Mediated Endothelial Dysfunction: The Potential Role of Chronic Oxidative Stress in the mitochondria (Homo sapiens) |
Image does not exist mRNA vaccine activation of Dendritic cell and induction of IFN-1 (Homo sapiens) |
Image does not exist Copper metabolism (Homo sapiens) |
|
Image does not exist Disorders in Ketolysis (Homo sapiens) |
Image does not exist Inflammatory bowel disease signaling (Homo sapiens) |
January 2022
|
Image does not exist Serotonin HTR1 group and FOS pathway (Homo sapiens) |
Image does not exist BDNF pathway (Mus musculus) |
Image does not exist Quercetin and Nf-kB / AP-1 induced apoptosis (Homo sapiens) |
Image does not exist mRNA, protein, and metabolite inducation pathway by cyclosporin A (Homo sapiens) |
|
Image does not exist Flavan-3-ol metabolic pathway (Homo sapiens) |
Image does not exist miRNA degrading enzymes (Homo sapiens) |
Image does not exist Measles virus infection (Homo sapiens) |
Image does not exist Non-classical role of vitamin D (Homo sapiens) |
|
Image does not exist SARS-CoV-2 replication organelle formation (Homo sapiens) |
December 2021
|
Image does not exist GPR143 in melanocytes and retinal pigment epithelium cells (Homo sapiens) |
Image does not exist Pentose phosphate pathway in senescent cells (Homo sapiens) |
Image does not exist Salmonella virulence regulatory network (Escherichia coli) |
Image does not exist NRP1-triggered signaling pathways in pancreatic cancer (Homo sapiens) |
September 2021
|
Image does not exist Vasopressin-regulated water reabsorption (Homo sapiens) |
August 2021
|
Image does not exist Angiotensin II receptor type 1 pathway (Homo sapiens) |
Image does not exist Burn wound healing (Homo sapiens) |
Image does not exist Burn Wound Healing (Mus musculus) |
Image does not exist Malignant pleural mesothelioma (Homo sapiens) |
|
Image does not exist Burn wound healing (Rattus norvegicus) |
Image does not exist Kinin-Kallikrein pathway (Homo sapiens) |
Image does not exist Network map of SARS-CoV-2 signaling pathway (Homo sapiens) |
Image does not exist SMC1/SMC3 role in DNA damage - Cornelia de Lange Syndrome (Homo sapiens) |
|
Image does not exist Prostaglandin signaling (Homo sapiens) |
Image does not exist Orexin receptor pathway (Homo sapiens) |
Image does not exist Overview of proinflammatory and profibrotic mediators (Homo sapiens) |
Image does not exist CCL18 signaling pathway (Homo sapiens) |
|
Image does not exist Nucleotide excision repair in xeroderma pigmentosum (Homo sapiens) |
Image does not exist Cohesin complex - Cornelia de Lange syndrome (Homo sapiens) |
Image does not exist NIPBL role in DNA damage - Cornelia de Lange syndrome (Homo sapiens) |
Image does not exist Sphingolipid metabolism in senescence (Homo sapiens) |
|
Image does not exist Prostaglandin and leukotriene metabolism in senescence (Homo sapiens) |
Image does not exist Fibrin complement receptor 3 signaling pathway (Mus musculus) |
July 2021
|
Image does not exist Hypoxia-dependent self-renewal of myoblasts (Mus musculus) |
Image does not exist Hypoxia-dependent proliferation of myoblasts (Mus musculus) |
Image does not exist Hypoxia-dependent differentiation of myoblasts (Mus musculus) |
Image does not exist Inclusion body myositis (Homo sapiens) |
|
Image does not exist Familial hyperlipidemia type 1 (Homo sapiens) |
Image does not exist Familial hyperlipidemia type 2 (Homo sapiens) |
Image does not exist Familial hyperlipidemia type 3 (Homo sapiens) |
Image does not exist Familial hyperlipidemia type 4 (Homo sapiens) |
|
Image does not exist T-cell activation SARS-CoV-2 (Homo sapiens) |
Image does not exist Congenital generalized lipodystrophy (CGL) (Homo sapiens) |
Image does not exist Familial partial lipodystrophy (FPLD) (Homo sapiens) |
Image does not exist Progeria-associated lipodystrophy (Homo sapiens) |
|
Image does not exist Familial hyperlipidemia type 5 (Homo sapiens) |
Image does not exist Acquired partial lipodystrophy / Barraquer-Simons syndrome (Homo sapiens) |
Image does not exist Antiviral and anti-inflammatory effects of Nrf2 on SARS-CoV-2 pathway (Homo sapiens) |
Image does not exist Alzheimer's disease (Homo sapiens) |
|
Image does not exist SARS-CoV-2 B.1.1.7 variant antagonises innate immune activation (Homo sapiens) |
Image does not exist Meta pathway lipodystrophy, dyslipidemia and hyperlipidemia (Homo sapiens) |
Image does not exist Interactions of natural killer cells in pancreatic cancer (Homo sapiens) |
June 2021
|
Image does not exist Genes associated with the development of rheumatoid arthritis (Homo sapiens) |
Image does not exist Neuroinflammation and glutamatergic signaling (Homo sapiens) |
Image does not exist Complement system in neuronal development and plasticity (Homo sapiens) |
Image does not exist Fatty acid biosynthesis (Caenorhabditis elegans) |
|
Image does not exist Hepatocyte growth factor receptor signaling (Gallus gallus) |
Image does not exist Hepatocyte growth factor receptor signaling (Pan troglodytes) |
Image does not exist Hepatocyte growth factor receptor signaling (Canis familiaris) |
Image does not exist S1P receptor signal transduction (Canis familiaris) |
May 2021
|
Image does not exist Serine Metabolism (Homo sapiens) |
Image does not exist Peptidoglycan cytoplasmic synthesis and recycling pathways (Escherichia coli) |
Image does not exist FOXA2 pathway (Homo sapiens) |
Image does not exist Modulators of TCR signaling and T cell activation (Homo sapiens) |
|
Image does not exist Kallmann's Syndrome (Homo sapiens) |
Image does not exist Fatty acid transporters (Homo sapiens) |
April 2021
|
Image does not exist FOXP3 in COVID-19 (Homo sapiens) |
Image does not exist SARS-CoV-2 altering angiogenesis via NRP1 (Homo sapiens) |
Image does not exist Soluble ACE2-mediated cell entry of SARS-CoV-2 (Homo sapiens) |
March 2021
|
Image does not exist Hair Follicle Development: Organogenesis - Part 2 of 3 (Homo sapiens) |
Image does not exist Liver steatosis AOP (Homo sapiens) |
Image does not exist nsp1 from SARS-CoV-2 inhibits translation initiation in the host cell (Homo sapiens) |
Image does not exist Kynurenine Pathway and links to Cellular Senescence (Homo sapiens) |
|
Image does not exist NAD Metabolism in Oncogene-Induced Senescence and Mitochondrial Dysfunction-Associated Senescence (Homo sapiens) |
Image does not exist Nephrogenesis (Homo sapiens) |
Image does not exist Development of ureteric collection system (Homo sapiens) |
Image does not exist 7-oxo-C and 7beta-HC pathways (Homo sapiens) |
February 2021
|
Image does not exist Airway smooth muscle cell contraction (Homo sapiens) |
Image does not exist SARS-CoV-2 mitochondrial interactions (Homo sapiens) |
Image does not exist SARS-CoV-2 Innate Immunity Evasion and Cell-specific immune response (Homo sapiens) |
Image does not exist Glycolysis in senescence (Homo sapiens) |
|
Image does not exist TCA cycle in senescence (Homo sapiens) |
January 2021
|
Image does not exist Mitochondrial fatty acid synthesis pathway (Homo sapiens) |
Image does not exist Ethylmalonic Encephalopathy (Homo sapiens) |
Image does not exist Biotin Metabolism (including IEMs) (Homo sapiens) |
Image does not exist Riboflavin and CoQ disorders (Homo sapiens) |

