G alpha (i) signaling events (Homo sapiens)

From WikiPathways

Revision as of 09:05, 7 May 2021 by Eweitz (Talk | contribs)
(diff) ←Older revision | Current revision (diff) | Newer revision→ (diff)
Jump to: navigation, search
29, 412, 25181723185, 19, 2435312, 157, 14, 397, 14, 392, 252, 257, 14, 391822, 23, 26, 39cytosolCHRM2 CXCL10(22-98) Noscapine G-protein alpha(z):GTP:AdenylatecyclaseADCY5 GDP 5HT TAS2R19 Cucurbitacin B GNB1 Absynthin GPR18 ADCY7 L-Glu INSL5(115-135) TAS2R16 TAS2R7 PGE2 CX3CR1 APLNR PPYR1 PSAP(?-?) OPN3 Salicin GNB1 Noscapine G alpha(s):GTP:AdenylatecyclaseP2RY14 GTP TAS2R45 GPSM1, GPSM3,(GPSM2,PCP2)TAS2R60 Aristolochic acid ANXA1 CCL23-2 RGS9 Bradykinin S1P GPR37L1 GNG8 LTD4 APLN(42-77) OPN1MW Amygdalin GNAT3 GDP CXCR1 CXCR1 CXCL5(37-114) NMUR2 TAS2R20 GPR37L1 CXCL11 RGS17 PTGER3 PPY(30-65) RXFP3 UTP GNG13 TAS2R42 Camphor Cucurbitacin E RGR SACC P2RY4 GNG10 Ca2+ CORT(89-105) CHRM2 DRD3 Bradykinin GNAI1 GNG4 C3AR1 MLT GAL G-alpha(t):GTP:G-beta-gamma:OpsinsCCR8 UTP RGS7 AcCho TAS2R40 TAS2R46 C3AR1 GNGT2 Cascarillin CCL4L1 GDP HEBP1(1-21) TAS2R5 GNG4 CX3CR1 GNAZ RGS10 OPRD1 12(S)-HETE CCL1 RGS13 POMC(237-241) Erythromycin CCR4 NPY2R SRC POMC(237-241) Crispolide Chloramphenicol CXCR3 CCL27 ADORA1 NPY NAGLY GNB5 TAS2R43 GPR31 APLNR RGS8 MTNR1B S1PR2 OXGR1 AGT(34-41) PENK(210-214) NPY NMU MLT APLN(50-77) RGS5 TAS1R1 Arborescin ADCY4 GABBR2 GRM2 Photon D-Trp CXCL13 OPN1MW Suc GNG8 DA PENK(136-140) PTGDR2 CASR Limonin NCA CXCR7 Ca2+ TAS2R46 LPAR3 FPR3 cis-isohumulone GNAI3 FPR2 2OG GNG7 SSTR2 RGS17 GNGT2 SSTR5 TAS2R13 TAS1R2 TAS2R13 GNG13 PSAP(326-340) RGS4 GNB1 MCHR2 PTGDR2 HTR1D AEA Mg2+ GTP RGS18 NPB(25-48) TAS2R1 SSTR1 APLN(50-77) GPR18 CCR7 APLN(65-77) Amygdalin ADCY6 GNAI2 TAS1R2 HTR1E GRM3 CXCL13 Amarogentin TAS2R30 Ade-Rib ASP RGS21 CCR8 TAS2R14 PENK(230-234) TAS2R9 RGS20 GNG13 GNG12 D-Trp OPN1MW APP(672-713) NPBWR2 CXCL1(35-107) TAS1R2 C5a RGS19 NPY1R TAS2R31 LPA AGTR2 CXCL3(35-107) FMLP GNG12 GNAI3 GNG7 TAS2R19 L-Glu NPY2R Noscapine LTE4 NMS HRH4 TAS2R39 GNAT1 APLN(42-77) INSL5(115-135) S1PR2 HTR1D GNG10 Grosshemin S1PR3 TAS2R40 Crispolide GNG7 ADPGNAT3 GNGT2 CXCR4 RGS11 ADCY8 GNG3 Dynorphins Ethylpyrazine GDP SSTR5 OPN1SW LTD4 RGS19 ADCY8 CCR5 CCL25 GNB3 GNGT2 RGS16 TAS2R43 GPR17 cAMPMg2+ CCR10 GNG2 CCR10 PGD2 RLN3(119-142) PGD2 RGS9 P2RY13 GNAI1 Hist ESTG OPN3 APP(672-713) ADCY2 Ligand:GPCRcomplexes thatactivateGi:HeterotrimericG-protein Gi(inactive)CXCR3 TAS2R13 HTR1F GPSM1 RGS1 PF4(48-101) Aloin GABBR1 Quinine Limonin HCAR1 CXCL3(35-107) GNG5 APLN(47-77) SSTR2 Helicin MTNR1A GNAI1 TAS2R50 GRM8 GNAT3 RGR TAS2R38 Cucurbitacin B ADCY2 CXCR5 SSTR1 CCL28 CHRM2 Phenethyl isothiocyanate GTP RXFP4 PPYR1 RGS4 CXCL9 GNAT2 RGS12 GNB3 ANXA1 Falcarindiol GNG13 CXCL2(35-107) SUCCA OXER1 Andrographolide ADORA1 PGD2 NPY5R Sinigrin PENK(230-234) Quinine SUCCA HTR1F ADCY1 LPA OPRL1 Alpha-thujone GNG12 CCR6 GNB5 ADP TAS2R30 CXCR6 GPR17 GNB1 GNAT1 GNB4 AcCho CCL1 ASP PSAP(326-340) Arborescin TAS2R10 OPRL1 GNAT3 NAd NPB(25-48) GNAI1 CHRM4 RLN3(119-142) OXGR1 GAL OPN1LW RLN3(26-52) GNG7 TAS2R4 Aloin LTE4 RGS14 POMC(237-267) GNB3 HCAR2 Cnicin CCR9 5-oxoETE NPW(33-62) SACC CCL4L1 TAS2R42 HTR1B DRD3 NPY1R ADCY2 CCR10 TAS2R50 DA OXGR1 NCA CHRM4 NCA CXCR7 CNR2 NMU GPSM2 GNG12 OPRK1 CXCL9 RGS8 TAS2R39 TAS2R45 TAS2R1 HeterotrimericG-protein Gi(inactive)Hist Alpha-thujone OPN5 Amygdalin ADCY4 RGS4 Helicin IL8 APLN(65-77) CXCR2 INSL5(115-135) ADRA2C GABBR1 S1PR4 PPBP(35-128) MCHR1 NMU SSTR3 GNGT1 CCR2 NPB(25-48) TAS2R41 GPR37L1 P2RY14 Photon NPBWR1 RGS18 DA GAL Absynthin LTE4 CXCR4 GNB3 G-alpha(t)-GTPGNG11 GNG4 FPR1 POMC(237-241) TAS2R20 TAS2R38 PYY(29-64) Ethylpyrazine RGS16 CCR6 GABA RGS7 2OG ADCY8 GNG7 p-Y416-SRCGNG11 OPRM1 Picrotoxinin SAA1(19-122) CASR G-protein beta-gammacomplexChloramphenicol LPAR5 ADRA2B CXCL6(38-114) CCL20(27-96) RGS14 ADCY1 SSTR4 GNG3 PMCH(147-165) GTP PPBP(35-128) LXA4 L-Glu GRM6 HTR5A Papaverine 3-hydroxybutyric acid MTNR1A APLN(50-77) UDP-Glc RRH GNG11 GPR37 RGS14 ADCY5 GNG10 GNAT2 S1PR5 CXCR1 GRM3 GNB2 TAS2R4 GNB2 PF4(48-101) GNG11 GPR31 APLN(42-77) GNG10 C3a TAS1R3 Amarogentin Phenethyl isothiocyanate HEBP1(1-21) TAS2R1 AITC CCL21 GNAT2 GRM4 Artemorin GPR183 TAS2R50 NPBWR1 GNAT3 MCHR1 HCAR1 GABBR2 HCAR3 GNG12 GRM2 OPRM1 APLN(65-77) HEBP1(1-21) CCR2 TAS2R3 PYY(29-64) TAS2R19 GPR55 GDPRGS22 GALR3 GNB4 UDP-Glc RXFP3 S1PR4 GALR3 GNG10 CCL4L1 CCL16 GNB1 GTP PENK(107-111) ADORA3 OXER1 CCL13 G alpha (i):GDP:RGSCaffeine GRM2 Andrographolide HCAR3 GNG8 APLN(47-77) CXCR3 Dynorphins PTGER3 RGS6 GNAI3 SSTR2 HTR1F OPRL1 GRM4 Caffeine GNG3 Cnicin GDP Cucurbitacin E Opioid SignallingOPRD1 TAS2R16 2AG HCAR2 GNG13 FPR1 GNB1 Brucine ADRA2C GTP Andrographolide GNG2 GNG5 LPAR5 MTNR1A S1PR3 ADCY5 GNG3 C5AR1 RGS16 GALR1 RGS1 CXCL9 PSAP(?-?) PGE2 Aristolochic acid RGS6 GNAI3 RGS1,3,4,5,6,7,8,9,10,11,12,13,14,16,17,18,19,20,21CCL21 INSL5(23-48) GNB4 CASR SSTR5 TAS1R1 SSTR3 GNG8 GPR31 Grosshemin INSL5(23-48) TAS2R31 OPN1SW P2RY12 12(S)-HETE Adenylate cyclase(Mg2+ cofactor)Suc PENK(210-214) TAS1R3 GRM7 MTNR1B GNB2 CCL28 HTR5A GNG2 RGS12 AEA Thiamine RGS5 Cucurbitacin E GNB5 CXCL6(38-114) GNAI2 ADCY2 CXCL16 TAS2R8 LTC4 Somatostatin HTR1B GRM7 Coumarin G-alpha(t)-GDP:G-beta-gammaGNB3 RGS1 DRD3 Colchicine NAd RGS20 NPW(33-55) LPAR3 Parthenolide CCL27 NPW(33-62) 3-hydroxybutyric acid ADCY4 CCR4 OPRK1 GNG4 GNG5 CXCL12(22-93) RHO PPBP(35-128) RGS8 CCR4 IL8 Arbutin GNAT3 Yohimbine BDKRB2 Ligand:GPCRcomplexes thatactivate GiOpsins:photonTAS2R3 GPER1 TAS2R46 CCL4(24-92) CNR1 GNG5 GNB2 GNAT3 PENK(136-140) GNB2 PPiPCP2 S1PR3 CCR3 BDKRB2 CCL5(24-91) NPBWR2 S1PR5 CCL25 Quinine GNG5 GRM6 ADCY1 RGSL1 D-Trp PGE2 C3AR1 DRD4 RXFP4 OPN1LW GNB3 GRM6 Colchicine Colchicine Mg2+ Photon CCL1 ADCY3 Coumarin GNB2 NPY GDPIL8 NMS POMC(237-267) G-protein alpha(i):GDPP2RY12 HTR1B GNAI1 Arglabin CXCR6 ADCY8 GNG11 CXCL12(22-93) Suc RGS proteins activefor G alpha (i)TAS1R3 GABA Aristolochic acid Bradykinin GALR2 OPN1LW CCL4(24-92) 5HT AITC cis-isohumulone RHO 12(S)-HETE CXCL5(37-114) RGS3 GNG10 GNG3 GNB2 Picrotoxinin ADCY9 SACC GNAI2 GPR55 LTD4 LPAR1 RLN3(26-52) GABBR1 Grosshemin CXCL12(22-93) G-protein beta:gammasignallingRHO Limonin BDKRB1 NPBWR2 CNR2 Artemorin CCL28 Crispolide PTGER3 GNG8 ADP Quassin RGS1 PYY(29-64) GNG13 GPSM3 CCR2 LACT S1PR5 RGS13 CXCL16 CCL16 SSTR1 CXCR7 CCL23-2 TAS1R1 PSAP(326-340) GNGT1 Falcarindiol NAGLY GDP GTPArtemorin ADR ADCY7 CXCL11 Erythromycin LPAR3 TAS2R7 CCL20(27-96) ADCY7 CCR9 LPAR2 5-oxoETE FMLP NPW(33-55) CCR8 Ca2+ NPY5R CXCL10(22-98) ADCY9 CCR1 MCHR1 GNAT1 INSL5(23-48) CXCR2 Brucine Helicin GNB5 GNGT1 TAS2R16 GNG8 CXCL2(35-107) ADCY5 Coumarin GPR37 MCHR2 ADR RGS21 ADCY3 GRM7 GPR18 GNG2 ADRA2C FPR2 RGS21 Falcarindiol CHRM4 NPBWR1 CCL25 Arglabin PENK(210-214) CCL13 ESTG RGS19 Sinigrin CNR1 GNAI2 CXCL5(37-114) LPAR2 MT-RNR2 ADRA2B CCL16 Cascarillin 5HT RLN3(26-52) GNG13 Arbutin GRM8 Tatridin B ADR Phenethyl isothiocyanate AcCho FMLP GNAS1 RGS17 Absynthin GNB4 GNGT1 MT-RNR2 GPR17 Papaverine Camphor G alpha (i): GTPADCY1 GTP DRD4 RGS13 NMUR1 GNG5 ANXA1 RGS3 PPY(30-65) TAS2R9 SSTR3 ADCY6 PF4(48-101) GNAI2 SSTR4 RXFP4 HCAR2 CCR6 GTPCCL19 PiNMUR2 RGS7 RGS5 ADRA2B BDKRB2 GNG10 RGS20 GALR2 TAS2R4 ADRA2A Strychnine G alpha(i):GTP:SRC-1AGTR2 3-hydroxybutyric acid C3a HTR1D ASP MCHR2 LPAR2 SRCTAS2R43 Somatostatin OPRD1 NPY1R BDKRB1 OPRM1 Arborescin CXCR6 ADCY4 Camphor LPAR1 ATPGNAI1 TAS2R5 G-alpha(t):GDP:G-beta-gamma:OpsinsADCY3 CORT(89-105) RGS9 PENK(100-104) PNOC(130-146) GNB5 LTC4 Parthenolide TAS2R10 GALR2 SUCNR1 RGS11 UTP APLNR CCR7 NPB(25-53) PMCH(147-165) RGS6 GNAI3 GRM3 GNG3 Mg2+ ATPMLT GABA GNG2 GNAT3 DRD4 RGS14 AGT(34-41) CCL21 CCR3 GALR1 CCR9 CXCL1(35-107) SAA1(19-122) GTP PENK(136-140) GRM8 CCR7 GNAI1 P2RY13 RGS12 ADCY6 NPY5R Cnicin CNR2 GNB4 Brucine RGS12 HTR1E TAS2R41 PMCH(147-165) NAGLY RGS4 TAS2R14 GNB5 PENK(230-234) Yohimbine FPR3 TAS2R30 LXA4 GNB3 RGS9 Strychnine CCR5 ADP SUCNR1 GALR3 G protein alpha(i):GTP:p-Y416-SRCGNB5 GNG11 Somatostatin C3a PENK(100-104) Ethylpyrazine GNAI3 GNAI3 ESTG TAS2R60 ADCY7 2OG GNAI3 PNOC(130-146) HRH4 OPN5 Arglabin GNAT3 GNG4 TAS2R40 TAS2R38 RGS18 CCR1 Amarogentin GNAS2 RGS19 PENK(107-111) CCL19 ADORA3 CCL27 PPY(30-65) ADORA1 Papaverine Ade-Rib GABBR2 GNG7 GPER1 GNG2 ADRA2A RRH NPW(33-55) HCAR1 P2RY12 RGS21 Tatridin B GNAI2 GNG12 TAS2R5 HCAR3 NPB(25-53) LXA4 SUCCA RGS3 TAS2R39 Aloin Chloramphenicol SUCNR1 Thiamine CCR1 APLN(47-77) C5a GNAI1 CCL4(24-92) GNG7 G alpha (i):GTP:RGSPPYR1 cis-isohumulone TAS2R9 CXCL11 GNGT1 CCL23-2 CX3CL1 S1PR2 SSTR4 PENK(107-111) 7alpha,25-dihydroxycholesterol RGS10 GNGT1 GNAI2 Cascarillin CXCL2(35-107) 7alpha,25-dihydroxycholesterol P2RY14 OXER1 Hist GNAI1 PSAP(?-?) CXCL3(35-107) ADORA3 CXCL1(35-107) Salicin RGR CCL5(24-91) NPW(33-62) GRM4 HTR5A MT-RNR2 Yohimbine LPA RGS10 OPN3 GNG2 NPY2R P2RY13 Ligand:GPCRcomplexes thatactivateGi:HeterotrimericG-protein Gi(active)ADCY3 Thiamine C5AR1 Picrotoxinin RGS11 GNG5 RGS10 LPAR5 NPB(25-53) GNG3 3-hydroxyoctanoic acid CXCL13 FPR1 TAS2R20 Quassin GTP NMUR1 GPR55 NMS GNAI3 RGS13 PNOC(130-146) CCL5(24-91) TAS2R45 HTR1E Cucurbitacin B UDP-Glc NMUR2 GNAT3 Parthenolide CX3CR1 P2RY4 TAS2R60 Tatridin B 3-hydroxyoctanoic acid BDKRB1 S1P CCR3 GNG4 P2RY4 RGS18 RGS16 TAS2R10 GNAT2 RGS7 FPR2 GNG12 OPN5 RXFP3 RGS6 NMUR1 S1P Salicin GALR1 Erythromycin C5AR1 CXCL10(22-98) Ade-Rib CCL20(27-96) CXCR2 Sinigrin CX3CL1 GNG8 ADCY9 ADCY9 AGTR2 AITC LACT 7alpha,25-dihydroxycholesterol RRH GNGT1 3-hydroxyoctanoic acid GNB4 Arbutin GPER1 CORT(89-105) CXCL6(38-114) RGS20 2AG Alpha-thujone GNAI2 TAS2R7 GNGT2 G-protein alpha(i):GTP:AdenylatecyclaseGNAT1 VisualphototransductionAEA NAd HRH4 GNB1 CNR1 OPRK1 PENK(100-104) MTNR1B CCL13 CX3CL1 CXCR4 RGS5 p-Y416-SRC CCL19 RGS8 TAS2R3 Dynorphins 5-oxoETE CXCL16 LTC4 S1PR4 TAS2R8 TAS2R42 GTP OPN1SW RLN3(119-142) TAS2R41 FPR3 GNGT2 CCR5 Quassin GNAI1 RGS11 ADCY6 GNAI2 2AG ADRA2A C5a PTGDR2 SAA1(19-122) GPR183 GNAI2 APP(672-713) CXCR5 AGT(34-41) GNG11 LACT Strychnine POMC(237-267) PiCaffeine GNAI3 LPAR1 CXCR5 GNG4 GNGT2 TAS2R14 GNB4 GPR37 GPR183 TAS2R31 TAS2R8 6, 13, 27, 33, 37...91, 4, 11, 16, 20...810, 30, 43


Description

The classical signalling mechanism for G alpha (i) is inhibition of the cAMP dependent pathway through inhibition of adenylate cyclase (Dessauer C W et al. 2002). Decreased production of cAMP from ATP results in decreased activity of cAMP-dependent protein kinases. Other functions of G alpha (i) includes activation of the protein tyrosine kinase c-Src (Ma Y C et al. 2000). Regulator of G-protein Signalling (RGS) proteins can regulate the activity of G alpha (i) (Soundararajan et al. 2008). View original pathway at Reactome.

Comments

Reactome-Converter 
Pathway is converted from Reactome ID: 418594
Reactome-version 
Reactome version: 74
Reactome Author 
Reactome Author: Jupe, Steve

Try the New WikiPathways

View approved pathways at the new wikipathways.org.

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Blomhoff R, Blomhoff HK.; ''Overview of retinoid metabolism and function.''; PubMed Europe PMC Scholia
  2. Neubig RR, Siderovski DP.; ''Regulators of G-protein signalling as new central nervous system drug targets.''; PubMed Europe PMC Scholia
  3. Kleuss C, Raw AS, Lee E, Sprang SR, Gilman AG.; ''Mechanism of GTP hydrolysis by G-protein alpha subunits.''; PubMed Europe PMC Scholia
  4. von Lintig J.; ''Metabolism of carotenoids and retinoids related to vision.''; PubMed Europe PMC Scholia
  5. Dessauer CW, Chen-Goodspeed M, Chen J.; ''Mechanism of Galpha i-mediated inhibition of type V adenylyl cyclase.''; PubMed Europe PMC Scholia
  6. Berman DM, Wilkie TM, Gilman AG.; ''GAIP and RGS4 are GTPase-activating proteins for the Gi subfamily of G protein alpha subunits.''; PubMed Europe PMC Scholia
  7. Chen CK.; ''The vertebrate phototransduction cascade: amplification and termination mechanisms.''; PubMed Europe PMC Scholia
  8. Dupré DJ, Robitaille M, Rebois RV, Hébert TE.; ''The role of Gbetagamma subunits in the organization, assembly, and function of GPCR signaling complexes.''; PubMed Europe PMC Scholia
  9. Kach J, Sethakorn N, Dulin NO.; ''A finer tuning of G-protein signaling through regulated control of RGS proteins.''; PubMed Europe PMC Scholia
  10. Hamm HE.; ''The many faces of G protein signaling.''; PubMed Europe PMC Scholia
  11. von Lintig J, Kiser PD, Golczak M, Palczewski K.; ''The biochemical and structural basis for trans-to-cis isomerization of retinoids in the chemistry of vision.''; PubMed Europe PMC Scholia
  12. Oldham WM, Hamm HE.; ''Structural basis of function in heterotrimeric G proteins.''; PubMed Europe PMC Scholia
  13. Gagnon AW, Murray DL, Leadley RJ.; ''Cloning and characterization of a novel regulator of G protein signalling in human platelets.''; PubMed Europe PMC Scholia
  14. Morris TA, Fong SL.; ''Characterization of the gene encoding human cone transducin alpha-subunit (GNAT2).''; PubMed Europe PMC Scholia
  15. Siderovski DP, Willard FS.; ''The GAPs, GEFs, and GDIs of heterotrimeric G-protein alpha subunits.''; PubMed Europe PMC Scholia
  16. D'Ambrosio DN, Clugston RD, Blaner WS.; ''Vitamin A metabolism: an update.''; PubMed Europe PMC Scholia
  17. SUTHERLAND EW, RALL TW.; ''Fractionation and characterization of a cyclic adenine ribonucleotide formed by tissue particles.''; PubMed Europe PMC Scholia
  18. Ma YC, Huang J, Ali S, Lowry W, Huang XY.; ''Src tyrosine kinase is a novel direct effector of G proteins.''; PubMed Europe PMC Scholia
  19. Taussig R, Iñiguez-Lluhi JA, Gilman AG.; ''Inhibition of adenylyl cyclase by Gi alpha.''; PubMed Europe PMC Scholia
  20. Wang JS, Kefalov VJ.; ''The cone-specific visual cycle.''; PubMed Europe PMC Scholia
  21. Korenbrot JI.; ''Speed, sensitivity, and stability of the light response in rod and cone photoreceptors: facts and models.''; PubMed Europe PMC Scholia
  22. Van Dop C, Medynski DC, Apone LM.; ''Nucleotide sequence for a cDNA encoding the alpha subunit of retinal transducin (GNAT1) isolated from the human eye.''; PubMed Europe PMC Scholia
  23. Itoh H, Toyama R, Kozasa T, Tsukamoto T, Matsuoka M, Kaziro Y.; ''Presence of three distinct molecular species of Gi protein alpha subunit. Structure of rat cDNAs and human genomic DNAs.''; PubMed Europe PMC Scholia
  24. Taussig R, Tang WJ, Hepler JR, Gilman AG.; ''Distinct patterns of bidirectional regulation of mammalian adenylyl cyclases.''; PubMed Europe PMC Scholia
  25. Soundararajan M, Willard FS, Kimple AJ, Turnbull AP, Ball LJ, Schoch GA, Gileadi C, Fedorov OY, Dowler EF, Higman VA, Hutsell SQ, Sundström M, Doyle DA, Siderovski DP.; ''Structural diversity in the RGS domain and its interaction with heterotrimeric G protein alpha-subunits.''; PubMed Europe PMC Scholia
  26. Takami S, Getchell TV, McLaughlin SK, Margolskee RF, Getchell ML.; ''Human taste cells express the G protein alpha-gustducin and neuron-specific enolase.''; PubMed Europe PMC Scholia
  27. Hollinger S, Hepler JR.; ''Cellular regulation of RGS proteins: modulators and integrators of G protein signaling.''; PubMed Europe PMC Scholia
  28. Wolf G.; ''The visual cycle of the cone photoreceptors of the retina.''; PubMed Europe PMC Scholia
  29. Gilman AG.; ''G proteins: transducers of receptor-generated signals.''; PubMed Europe PMC Scholia
  30. Martin-Kleiner I, Balog T, Gabrilovac J.; ''Signal transduction induced by opioids in immune cells: a review.''; PubMed Europe PMC Scholia
  31. Burns ME, Pugh EN.; ''Lessons from photoreceptors: turning off g-protein signaling in living cells.''; PubMed Europe PMC Scholia
  32. Kefalov VJ.; ''Rod and cone visual pigments and phototransduction through pharmacological, genetic, and physiological approaches.''; PubMed Europe PMC Scholia
  33. Wang J, Ducret A, Tu Y, Kozasa T, Aebersold R, Ross EM.; ''RGSZ1, a Gz-selective RGS protein in brain. Structure, membrane association, regulation by Galphaz phosphorylation, and relationship to a Gz gtpase-activating protein subfamily.''; PubMed Europe PMC Scholia
  34. Pugh EN, Lamb TD.; ''Amplification and kinetics of the activation steps in phototransduction.''; PubMed Europe PMC Scholia
  35. Lambert NA.; ''Dissociation of heterotrimeric g proteins in cells.''; PubMed Europe PMC Scholia
  36. Harrison EH, Hussain MM.; ''Mechanisms involved in the intestinal digestion and absorption of dietary vitamin A.''; PubMed Europe PMC Scholia
  37. Traver S, Splingard A, Gaudriault G, De Gunzburg J.; ''The RGS (regulator of G-protein signalling) and GoLoco domains of RGS14 co-operate to regulate Gi-mediated signalling.''; PubMed Europe PMC Scholia
  38. Harrison EH.; ''Mechanisms of digestion and absorption of dietary vitamin A.''; PubMed Europe PMC Scholia
  39. Lerea CL, Bunt-Milam AH, Hurley JB.; ''Alpha transducin is present in blue-, green-, and red-sensitive cone photoreceptors in the human retina.''; PubMed Europe PMC Scholia
  40. Hunt TW, Fields TA, Casey PJ, Peralta EG.; ''RGS10 is a selective activator of G alpha i GTPase activity.''; PubMed Europe PMC Scholia
  41. Hildebrandt JD.; ''Role of subunit diversity in signaling by heterotrimeric G proteins.''; PubMed Europe PMC Scholia
  42. Posner BA, Gilman AG, Harris BA.; ''Regulators of G protein signaling 6 and 7. Purification of complexes with gbeta5 and assessment of their effects on g protein-mediated signaling pathways.''; PubMed Europe PMC Scholia
  43. Standifer KM, Pasternak GW.; ''G proteins and opioid receptor-mediated signalling.''; PubMed Europe PMC Scholia

History

View all...
CompareRevisionActionTimeUserComment
116410view09:05, 7 May 2021EweitzModified title
113220view11:28, 2 November 2020ReactomeTeamReactome version 74
101714view14:52, 1 November 2018DeSlOntology Term : 'G protein mediated signaling pathway' added !
101349view11:23, 1 November 2018ReactomeTeamreactome version 66
100887view20:57, 31 October 2018ReactomeTeamreactome version 65
100428view19:31, 31 October 2018ReactomeTeamreactome version 64
100272view16:57, 31 October 2018ReactomeTeamNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
12(S)-HETE MetaboliteCHEBI:34146 (ChEBI)
2AG MetaboliteCHEBI:52392 (ChEBI)
2OG MetaboliteCHEBI:16810 (ChEBI)
3-hydroxybutyric acid MetaboliteCHEBI:20067 (ChEBI)
3-hydroxyoctanoic acid MetaboliteCHEBI:37098 (ChEBI)
5-oxoETE MetaboliteCHEBI:52449 (ChEBI)
5HT MetaboliteCHEBI:28790 (ChEBI)
7alpha,25-dihydroxycholesterol MetaboliteCHEBI:37623 (ChEBI)
ADCY1 ProteinQ08828 (Uniprot-TrEMBL)
ADCY2 ProteinQ08462 (Uniprot-TrEMBL)
ADCY3 ProteinO60266 (Uniprot-TrEMBL)
ADCY4 ProteinQ8NFM4 (Uniprot-TrEMBL)
ADCY5 ProteinO95622 (Uniprot-TrEMBL)
ADCY6 ProteinO43306 (Uniprot-TrEMBL)
ADCY7 ProteinP51828 (Uniprot-TrEMBL)
ADCY8 ProteinP40145 (Uniprot-TrEMBL)
ADCY9 ProteinO60503 (Uniprot-TrEMBL)
ADORA1 ProteinP30542 (Uniprot-TrEMBL)
ADORA3 ProteinP0DMS8 (Uniprot-TrEMBL)
ADP MetaboliteCHEBI:456216 (ChEBI)
ADPMetaboliteCHEBI:456216 (ChEBI)
ADR MetaboliteCHEBI:28918 (ChEBI)
ADRA2A ProteinP08913 (Uniprot-TrEMBL)
ADRA2B ProteinP18089 (Uniprot-TrEMBL)
ADRA2C ProteinP18825 (Uniprot-TrEMBL)
AEA MetaboliteCHEBI:2700 (ChEBI)
AGT(34-41) ProteinP01019 (Uniprot-TrEMBL)
AGTR2 ProteinP50052 (Uniprot-TrEMBL)
AITC MetaboliteCHEBI:73224 (ChEBI)
ANXA1 ProteinP04083 (Uniprot-TrEMBL)
APLN(42-77) ProteinQ9ULZ1 (Uniprot-TrEMBL)
APLN(47-77) ProteinQ9ULZ1 (Uniprot-TrEMBL)
APLN(50-77) ProteinQ9ULZ1 (Uniprot-TrEMBL)
APLN(65-77) ProteinQ9ULZ1 (Uniprot-TrEMBL)
APLNR ProteinP35414 (Uniprot-TrEMBL)
APP(672-713) ProteinP05067 (Uniprot-TrEMBL)
ASP MetaboliteCHEBI:2877 (ChEBI)
ATPMetaboliteCHEBI:30616 (ChEBI)
Absynthin MetaboliteCHEBI:2366 (ChEBI)
AcCho MetaboliteCHEBI:15355 (ChEBI)
Ade-Rib MetaboliteCHEBI:16335 (ChEBI)
Adenylate cyclase (Mg2+ cofactor)ComplexR-HSA-170665 (Reactome)
Aloin MetaboliteCHEBI:73222 (ChEBI)
Alpha-thujone MetaboliteCHEBI:50042 (ChEBI)
Amarogentin MetaboliteCHEBI:2622 (ChEBI)
Amygdalin MetaboliteCHEBI:27613 (ChEBI)
Andrographolide MetaboliteCHEBI:65408 (ChEBI)
Arborescin MetaboliteCHEBI:73226 (ChEBI)
Arbutin MetaboliteCHEBI:18305 (ChEBI)
Arglabin MetaboliteCHEBI:73228 (ChEBI)
Aristolochic acid MetaboliteCHEBI:2825 (ChEBI)
Artemorin MetaboliteCHEBI:2853 (ChEBI)
BDKRB1 ProteinP46663 (Uniprot-TrEMBL)
BDKRB2 ProteinP30411 (Uniprot-TrEMBL)
Bradykinin ProteinP01042 (Uniprot-TrEMBL)
Brucine MetaboliteCHEBI:3193 (ChEBI)
C3AR1 ProteinQ16581 (Uniprot-TrEMBL)
C3a ProteinP01024 (Uniprot-TrEMBL)
C5AR1 ProteinP21730 (Uniprot-TrEMBL)
C5a ProteinP01031 (Uniprot-TrEMBL)
CASR ProteinP41180 (Uniprot-TrEMBL)
CCL1 ProteinP22362 (Uniprot-TrEMBL)
CCL13 ProteinQ99616 (Uniprot-TrEMBL)
CCL16 ProteinO15467 (Uniprot-TrEMBL)
CCL19 ProteinQ99731 (Uniprot-TrEMBL)
CCL20(27-96) ProteinP78556 (Uniprot-TrEMBL)
CCL21 ProteinO00585 (Uniprot-TrEMBL)
CCL23-2 ProteinP55773-2 (Uniprot-TrEMBL)
CCL25 ProteinO15444 (Uniprot-TrEMBL)
CCL27 ProteinQ9Y4X3 (Uniprot-TrEMBL)
CCL28 ProteinQ9NRJ3 (Uniprot-TrEMBL)
CCL4(24-92) ProteinP13236 (Uniprot-TrEMBL)
CCL4L1 ProteinQ8NHW4 (Uniprot-TrEMBL)
CCL5(24-91) ProteinP13501 (Uniprot-TrEMBL)
CCR1 ProteinP32246 (Uniprot-TrEMBL)
CCR10 ProteinP46092 (Uniprot-TrEMBL)
CCR2 ProteinP41597 (Uniprot-TrEMBL)
CCR3 ProteinP51677 (Uniprot-TrEMBL)
CCR4 ProteinP51679 (Uniprot-TrEMBL)
CCR5 ProteinP51681 (Uniprot-TrEMBL)
CCR6 ProteinP51684 (Uniprot-TrEMBL)
CCR7 ProteinP32248 (Uniprot-TrEMBL)
CCR8 ProteinP51685 (Uniprot-TrEMBL)
CCR9 ProteinP51686 (Uniprot-TrEMBL)
CHRM2 ProteinP08172 (Uniprot-TrEMBL)
CHRM4 ProteinP08173 (Uniprot-TrEMBL)
CNR1 ProteinP21554 (Uniprot-TrEMBL)
CNR2 ProteinP34972 (Uniprot-TrEMBL)
CORT(89-105) ProteinO00230 (Uniprot-TrEMBL)
CX3CL1 ProteinP78423 (Uniprot-TrEMBL)
CX3CR1 ProteinP49238 (Uniprot-TrEMBL)
CXCL1(35-107) ProteinP09341 (Uniprot-TrEMBL)
CXCL10(22-98) ProteinP02778 (Uniprot-TrEMBL)
CXCL11 ProteinO14625 (Uniprot-TrEMBL)
CXCL12(22-93) ProteinP48061 (Uniprot-TrEMBL)
CXCL13 ProteinO43927 (Uniprot-TrEMBL)
CXCL16 ProteinQ9H2A7 (Uniprot-TrEMBL)
CXCL2(35-107) ProteinP19875 (Uniprot-TrEMBL)
CXCL3(35-107) ProteinP19876 (Uniprot-TrEMBL)
CXCL5(37-114) ProteinP42830 (Uniprot-TrEMBL)
CXCL6(38-114) ProteinP80162 (Uniprot-TrEMBL)
CXCL9 ProteinQ07325 (Uniprot-TrEMBL)
CXCR1 ProteinP25024 (Uniprot-TrEMBL)
CXCR2 ProteinP25025 (Uniprot-TrEMBL)
CXCR3 ProteinP49682 (Uniprot-TrEMBL)
CXCR4 ProteinP61073 (Uniprot-TrEMBL)
CXCR5 ProteinP32302 (Uniprot-TrEMBL)
CXCR6 ProteinO00574 (Uniprot-TrEMBL)
CXCR7 ProteinP25106 (Uniprot-TrEMBL)
Ca2+ MetaboliteCHEBI:29108 (ChEBI)
Caffeine MetaboliteCHEBI:27732 (ChEBI)
Camphor MetaboliteCHEBI:36773 (ChEBI)
Cascarillin MetaboliteCHEBI:3445 (ChEBI)
Chloramphenicol MetaboliteCHEBI:17698 (ChEBI)
Cnicin MetaboliteCHEBI:3768 (ChEBI)
Colchicine MetaboliteCHEBI:23359 (ChEBI)
Coumarin MetaboliteCHEBI:28794 (ChEBI)
Crispolide MetaboliteCHEBI:73231 (ChEBI)
Cucurbitacin B MetaboliteCHEBI:3941 (ChEBI)
Cucurbitacin E MetaboliteCHEBI:3944 (ChEBI)
D-Trp MetaboliteCHEBI:16296 (ChEBI)
DA MetaboliteCHEBI:18243 (ChEBI)
DRD3 ProteinP35462 (Uniprot-TrEMBL)
DRD4 ProteinP21917 (Uniprot-TrEMBL)
Dynorphins R-HSA-374372 (Reactome)
ESTG MetaboliteCHEBI:50114 (ChEBI)
Erythromycin MetaboliteCHEBI:48923 (ChEBI)
Ethylpyrazine MetaboliteCHEBI:73232 (ChEBI)
FMLP MetaboliteCHEBI:53490 (ChEBI)
FPR1 ProteinP21462 (Uniprot-TrEMBL)
FPR2 ProteinP25090 (Uniprot-TrEMBL)
FPR3 ProteinP25089 (Uniprot-TrEMBL)
Falcarindiol MetaboliteCHEBI:69236 (ChEBI)
G alpha (i):GTP:SRC-1ComplexR-HSA-8964344 (Reactome)
G alpha

(s):GTP:Adenylate

cyclase
ComplexR-HSA-163622 (Reactome)
G alpha (i): GTPComplexR-HSA-392161 (Reactome)
G alpha (i):GDP:RGSComplexR-HSA-8982015 (Reactome)
G alpha (i):GTP:RGSComplexR-HSA-8982011 (Reactome)
G protein alpha (i):GTP:p-Y416-SRCComplexR-HSA-8964231 (Reactome)
G-alpha(t)-GDP:G-beta-gammaComplexR-HSA-420877 (Reactome)
G-alpha(t)-GTPComplexR-HSA-420891 (Reactome)
G-alpha(t):GDP:G-beta-gamma:OpsinsComplexR-HSA-8982635 (Reactome)
G-alpha(t):GTP:G-beta-gamma:OpsinsComplexR-HSA-8982649 (Reactome)
G-protein alpha (i):GDPComplexR-HSA-392164 (Reactome)
G-protein alpha

(i):GTP:Adenylate

cyclase
ComplexR-HSA-396910 (Reactome)
G-protein alpha

(z):GTP:Adenylate

cyclase
ComplexR-HSA-392049 (Reactome)
G-protein beta-gamma complexComplexR-HSA-167434 (Reactome)
G-protein beta:gamma signallingPathwayR-HSA-397795 (Reactome) The classical role of the G-protein beta/gamma dimer was believed to be the inactivation of the alpha subunit, Gbeta/gamma was viewed as a negative regulator of Galpha signalling. It is now known that Gbeta/gamma subunits can directly modulate many effectors, including some also regulated by G alpha.
GABA MetaboliteCHEBI:59888 (ChEBI)
GABBR1 ProteinQ9UBS5 (Uniprot-TrEMBL)
GABBR2 ProteinO75899 (Uniprot-TrEMBL)
GAL ProteinP22466 (Uniprot-TrEMBL)
GALR1 ProteinP47211 (Uniprot-TrEMBL)
GALR2 ProteinO43603 (Uniprot-TrEMBL)
GALR3 ProteinO60755 (Uniprot-TrEMBL)
GDP MetaboliteCHEBI:17552 (ChEBI)
GDPMetaboliteCHEBI:17552 (ChEBI)
GNAI1 ProteinP63096 (Uniprot-TrEMBL)
GNAI2 ProteinP04899 (Uniprot-TrEMBL)
GNAI3 ProteinP08754 (Uniprot-TrEMBL)
GNAS1 ProteinQ5JWF2 (Uniprot-TrEMBL)
GNAS2 ProteinP63092 (Uniprot-TrEMBL)
GNAT1 ProteinP11488 (Uniprot-TrEMBL)
GNAT2 ProteinP19087 (Uniprot-TrEMBL)
GNAT3 ProteinA8MTJ3 (Uniprot-TrEMBL)
GNAZ ProteinP19086 (Uniprot-TrEMBL)
GNB1 ProteinP62873 (Uniprot-TrEMBL)
GNB2 ProteinP62879 (Uniprot-TrEMBL)
GNB3 ProteinP16520 (Uniprot-TrEMBL)
GNB4 ProteinQ9HAV0 (Uniprot-TrEMBL)
GNB5 ProteinO14775 (Uniprot-TrEMBL)
GNG10 ProteinP50151 (Uniprot-TrEMBL)
GNG11 ProteinP61952 (Uniprot-TrEMBL)
GNG12 ProteinQ9UBI6 (Uniprot-TrEMBL)
GNG13 ProteinQ9P2W3 (Uniprot-TrEMBL)
GNG2 ProteinP59768 (Uniprot-TrEMBL)
GNG3 ProteinP63215 (Uniprot-TrEMBL)
GNG4 ProteinP50150 (Uniprot-TrEMBL)
GNG5 ProteinP63218 (Uniprot-TrEMBL)
GNG7 ProteinO60262 (Uniprot-TrEMBL)
GNG8 ProteinQ9UK08 (Uniprot-TrEMBL)
GNGT1 ProteinP63211 (Uniprot-TrEMBL)
GNGT2 ProteinO14610 (Uniprot-TrEMBL)
GPER1 ProteinQ99527 (Uniprot-TrEMBL)
GPR17 ProteinQ13304 (Uniprot-TrEMBL)
GPR18 ProteinQ14330 (Uniprot-TrEMBL)
GPR183 ProteinP32249 (Uniprot-TrEMBL) GPR183 (originally called EBI2) binds the oxysterol 7alpha,25-dihydroxycholesterol (7a,25-OHC) (Hannedouche et al. 2011, Liu et al. 2011). GPR183 is believed to played a key role in regulating B cell migration and responses (Gatto et al. 2009, Pereira et al. 2009, Yi et al. 2012, Sun & Liu 2015). It signals via Gi (Rosenkilde et al. 2006).
GPR31 ProteinO00270 (Uniprot-TrEMBL)
GPR37 ProteinO15354 (Uniprot-TrEMBL)
GPR37L1 ProteinO60883 (Uniprot-TrEMBL)
GPR55 ProteinQ9Y2T6 (Uniprot-TrEMBL)
GPSM1 ProteinQ86YR5 (Uniprot-TrEMBL)
GPSM1, GPSM3,(GPSM2, PCP2)ComplexR-HSA-8949487 (Reactome)
GPSM2 ProteinP81274 (Uniprot-TrEMBL)
GPSM3 ProteinQ9Y4H4 (Uniprot-TrEMBL)
GRM2 ProteinQ14416 (Uniprot-TrEMBL)
GRM3 ProteinQ14832 (Uniprot-TrEMBL)
GRM4 ProteinQ14833 (Uniprot-TrEMBL)
GRM6 ProteinO15303 (Uniprot-TrEMBL)
GRM7 ProteinQ14831 (Uniprot-TrEMBL)
GRM8 ProteinO00222 (Uniprot-TrEMBL)
GTP MetaboliteCHEBI:15996 (ChEBI)
GTPMetaboliteCHEBI:15996 (ChEBI)
Grosshemin MetaboliteCHEBI:5547 (ChEBI)
HCAR1 ProteinQ9BXC0 (Uniprot-TrEMBL)
HCAR2 ProteinQ8TDS4 (Uniprot-TrEMBL)
HCAR3 ProteinP49019 (Uniprot-TrEMBL)
HEBP1(1-21) ProteinQ9NRV9 (Uniprot-TrEMBL)
HRH4 ProteinQ9H3N8 (Uniprot-TrEMBL)
HTR1B ProteinP28222 (Uniprot-TrEMBL)
HTR1D ProteinP28221 (Uniprot-TrEMBL)
HTR1E ProteinP28566 (Uniprot-TrEMBL)
HTR1F ProteinP30939 (Uniprot-TrEMBL)
HTR5A ProteinP47898 (Uniprot-TrEMBL)
Helicin MetaboliteCHEBI:73235 (ChEBI)
Heterotrimeric

G-protein Gi

(inactive)
ComplexR-HSA-392165 (Reactome)
Hist MetaboliteCHEBI:18295 (ChEBI)
IL8 ProteinP10145 (Uniprot-TrEMBL)
INSL5(115-135) ProteinQ9Y5Q6 (Uniprot-TrEMBL)
INSL5(23-48) ProteinQ9Y5Q6 (Uniprot-TrEMBL)
L-Glu MetaboliteCHEBI:29985 (ChEBI)
LACT MetaboliteCHEBI:422 (ChEBI)
LPA MetaboliteCHEBI:52288 (ChEBI)
LPAR1 ProteinQ92633 (Uniprot-TrEMBL)
LPAR2 ProteinQ9HBW0 (Uniprot-TrEMBL)
LPAR3 ProteinQ9UBY5 (Uniprot-TrEMBL)
LPAR5 ProteinQ9H1C0 (Uniprot-TrEMBL)
LTC4 MetaboliteCHEBI:16978 (ChEBI)
LTD4 MetaboliteCHEBI:28666 (ChEBI)
LTE4 MetaboliteCHEBI:15650 (ChEBI)
LXA4 MetaboliteCHEBI:6498 (ChEBI)
Ligand:GPCR

complexes that activate Gi:Heterotrimeric G-protein Gi

(active)
ComplexR-HSA-749445 (Reactome)
Ligand:GPCR

complexes that activate Gi:Heterotrimeric G-protein Gi

(inactive)
ComplexR-HSA-749455 (Reactome)
Ligand:GPCR

complexes that

activate Gi
ComplexR-HSA-380091 (Reactome)
Limonin MetaboliteCHEBI:16226 (ChEBI)
MCHR1 ProteinQ99705 (Uniprot-TrEMBL)
MCHR2 ProteinQ969V1 (Uniprot-TrEMBL)
MLT MetaboliteCHEBI:16796 (ChEBI)
MT-RNR2 ProteinQ8IVG9 (Uniprot-TrEMBL)
MTNR1A ProteinP48039 (Uniprot-TrEMBL)
MTNR1B ProteinP49286 (Uniprot-TrEMBL)
Mg2+ MetaboliteCHEBI:18420 (ChEBI)
NAGLY MetaboliteCHEBI:58961 (ChEBI)
NAd MetaboliteCHEBI:18357 (ChEBI)
NCA MetaboliteCHEBI:15940 (ChEBI)
NMS ProteinQ5H8A3 (Uniprot-TrEMBL)
NMU ProteinP48645 (Uniprot-TrEMBL)
NMUR1 ProteinQ9HB89 (Uniprot-TrEMBL)
NMUR2 ProteinQ9GZQ4 (Uniprot-TrEMBL)
NPB(25-48) ProteinQ8NG41 (Uniprot-TrEMBL)
NPB(25-53) ProteinQ8NG41 (Uniprot-TrEMBL)
NPBWR1 ProteinP48145 (Uniprot-TrEMBL)
NPBWR2 ProteinP48146 (Uniprot-TrEMBL)
NPW(33-55) ProteinQ8N729 (Uniprot-TrEMBL)
NPW(33-62) ProteinQ8N729 (Uniprot-TrEMBL)
NPY ProteinP01303 (Uniprot-TrEMBL)
NPY1R ProteinP25929 (Uniprot-TrEMBL)
NPY2R ProteinP49146 (Uniprot-TrEMBL)
NPY5R ProteinQ15761 (Uniprot-TrEMBL)
Noscapine MetaboliteCHEBI:73237 (ChEBI)
OPN1LW ProteinP04000 (Uniprot-TrEMBL)
OPN1MW ProteinP04001 (Uniprot-TrEMBL)
OPN1SW ProteinP03999 (Uniprot-TrEMBL)
OPN3 ProteinQ9H1Y3 (Uniprot-TrEMBL)
OPN5 ProteinQ6U736 (Uniprot-TrEMBL)
OPRD1 ProteinP41143 (Uniprot-TrEMBL)
OPRK1 ProteinP41145 (Uniprot-TrEMBL)
OPRL1 ProteinP41146 (Uniprot-TrEMBL)
OPRM1 ProteinP35372 (Uniprot-TrEMBL)
OXER1 ProteinQ8TDS5 (Uniprot-TrEMBL)
OXGR1 ProteinQ96P68 (Uniprot-TrEMBL)
Opioid SignallingPathwayR-HSA-111885 (Reactome) Opioids are chemical substances similar to opiates, the active substances found in opium (morphine, codeine etc.). Opioid action is mediated by the receptors for endogenous opioids; peptides such as the enkephalins, the endorphins or the dynorphins. Opioids possess powerful analgesic and sedative effects, and are widely used as pain-killers. Their main side-effect is the rapid establishment of a strong addiction. Opioids receptors are G-protein coupled receptors (GPCR). There are four classes of receptors: mu (MOR), kappa (KOR) and delta (DOR), and the nociceptin receptor (NOP).
Opsins:photonComplexR-HSA-419779 (Reactome)
P2RY12 ProteinQ9H244 (Uniprot-TrEMBL)
P2RY13 ProteinQ9BPV8 (Uniprot-TrEMBL)
P2RY14 ProteinQ15391 (Uniprot-TrEMBL)
P2RY4 ProteinP51582 (Uniprot-TrEMBL)
PCP2 ProteinQ8IVA1 (Uniprot-TrEMBL)
PENK(100-104) ProteinP01210 (Uniprot-TrEMBL)
PENK(107-111) ProteinP01210 (Uniprot-TrEMBL)
PENK(136-140) ProteinP01210 (Uniprot-TrEMBL)
PENK(210-214) ProteinP01210 (Uniprot-TrEMBL)
PENK(230-234) ProteinP01210 (Uniprot-TrEMBL)
PF4(48-101) ProteinP02776 (Uniprot-TrEMBL)
PGD2 MetaboliteCHEBI:15555 (ChEBI)
PGE2 MetaboliteCHEBI:15551 (ChEBI)
PMCH(147-165) ProteinP20382 (Uniprot-TrEMBL)
PNOC(130-146) ProteinQ13519 (Uniprot-TrEMBL)
POMC(237-241) ProteinP01189 (Uniprot-TrEMBL)
POMC(237-267) ProteinP01189 (Uniprot-TrEMBL)
PPBP(35-128) ProteinP02775 (Uniprot-TrEMBL)
PPY(30-65) ProteinP01298 (Uniprot-TrEMBL)
PPYR1 ProteinP50391 (Uniprot-TrEMBL)
PPiMetaboliteCHEBI:29888 (ChEBI)
PSAP(326-340) ProteinP07602 (Uniprot-TrEMBL) TXLIDNNATEEILY where X is a D-alanine
PSAP(?-?) ProteinP07602 (Uniprot-TrEMBL) TXLIDNNATEEILY where X is a D-alanine
PTGDR2 ProteinQ9Y5Y4 (Uniprot-TrEMBL)
PTGER3 ProteinP43115 (Uniprot-TrEMBL)
PYY(29-64) ProteinP10082 (Uniprot-TrEMBL)
Papaverine MetaboliteCHEBI:28241 (ChEBI)
Parthenolide MetaboliteCHEBI:7939 (ChEBI)
Phenethyl isothiocyanate MetaboliteCHEBI:351346 (ChEBI)
Photon MetaboliteCHEBI:30212 (ChEBI)
PiMetaboliteCHEBI:43474 (ChEBI)
Picrotoxinin MetaboliteCHEBI:8206 (ChEBI)
Quassin MetaboliteCHEBI:8692 (ChEBI)
Quinine MetaboliteCHEBI:15854 (ChEBI)
RGR ProteinP47804 (Uniprot-TrEMBL)
RGS proteins active for G alpha (i)ComplexR-HSA-921124 (Reactome)
RGS1 ProteinQ08116 (Uniprot-TrEMBL)
RGS1,3,4,5,6,7,8,9,10,11,12,13,14,16,17,18,19,20,21ComplexR-HSA-8982016 (Reactome)
RGS10 ProteinO43665 (Uniprot-TrEMBL)
RGS11 ProteinO94810 (Uniprot-TrEMBL)
RGS12 ProteinO14924 (Uniprot-TrEMBL)
RGS13 ProteinO14921 (Uniprot-TrEMBL)
RGS14 ProteinO43566 (Uniprot-TrEMBL)
RGS16 ProteinO15492 (Uniprot-TrEMBL)
RGS17 ProteinQ9UGC6 (Uniprot-TrEMBL)
RGS18 ProteinQ9NS28 (Uniprot-TrEMBL)
RGS19 ProteinP49795 (Uniprot-TrEMBL)
RGS20 ProteinO76081 (Uniprot-TrEMBL)
RGS21 ProteinQ2M5E4 (Uniprot-TrEMBL)
RGS22 ProteinQ8NE09 (Uniprot-TrEMBL)
RGS3 ProteinP49796 (Uniprot-TrEMBL)
RGS4 ProteinP49798 (Uniprot-TrEMBL)
RGS5 ProteinO15539 (Uniprot-TrEMBL)
RGS6 ProteinP49758 (Uniprot-TrEMBL)
RGS7 ProteinP49802 (Uniprot-TrEMBL)
RGS8 ProteinP57771 (Uniprot-TrEMBL)
RGS9 ProteinO75916 (Uniprot-TrEMBL)
RGSL1 ProteinA5PLK6 (Uniprot-TrEMBL)
RHO ProteinP08100 (Uniprot-TrEMBL)
RLN3(119-142) ProteinQ8WXF3 (Uniprot-TrEMBL)
RLN3(26-52) ProteinQ8WXF3 (Uniprot-TrEMBL)
RRH ProteinO14718 (Uniprot-TrEMBL)
RXFP3 ProteinQ9NSD7 (Uniprot-TrEMBL)
RXFP4 ProteinQ8TDU9 (Uniprot-TrEMBL)
S1P MetaboliteCHEBI:37550 (ChEBI)
S1PR2 ProteinO95136 (Uniprot-TrEMBL)
S1PR3 ProteinQ99500 (Uniprot-TrEMBL)
S1PR4 ProteinO95977 (Uniprot-TrEMBL)
S1PR5 ProteinQ9H228 (Uniprot-TrEMBL)
SAA1(19-122) ProteinP0DJI8 (Uniprot-TrEMBL)
SACC MetaboliteCHEBI:32111 (ChEBI)
SRC ProteinP12931 (Uniprot-TrEMBL)
SRCProteinP12931 (Uniprot-TrEMBL)
SSTR1 ProteinP30872 (Uniprot-TrEMBL)
SSTR2 ProteinP30874 (Uniprot-TrEMBL)
SSTR3 ProteinP32745 (Uniprot-TrEMBL)
SSTR4 ProteinP31391 (Uniprot-TrEMBL)
SSTR5 ProteinP35346 (Uniprot-TrEMBL)
SUCCA MetaboliteCHEBI:30031 (ChEBI)
SUCNR1 ProteinQ9BXA5 (Uniprot-TrEMBL)
Salicin MetaboliteCHEBI:17814 (ChEBI)
Sinigrin MetaboliteCHEBI:9162 (ChEBI)
Somatostatin R-HSA-374714 (Reactome)
Strychnine MetaboliteCHEBI:28973 (ChEBI)
Suc MetaboliteCHEBI:17992 (ChEBI)
TAS1R1 ProteinQ7RTX1 (Uniprot-TrEMBL)
TAS1R2 ProteinQ8TE23 (Uniprot-TrEMBL)
TAS1R3 ProteinQ7RTX0 (Uniprot-TrEMBL)
TAS2R1 ProteinQ9NYW7 (Uniprot-TrEMBL)
TAS2R10 ProteinQ9NYW0 (Uniprot-TrEMBL)
TAS2R13 ProteinQ9NYV9 (Uniprot-TrEMBL)
TAS2R14 ProteinQ9NYV8 (Uniprot-TrEMBL)
TAS2R16 ProteinQ9NYV7 (Uniprot-TrEMBL)
TAS2R19 ProteinP59542 (Uniprot-TrEMBL)
TAS2R20 ProteinP59543 (Uniprot-TrEMBL)
TAS2R3 ProteinQ9NYW6 (Uniprot-TrEMBL)
TAS2R30 ProteinP59541 (Uniprot-TrEMBL)
TAS2R31 ProteinP59538 (Uniprot-TrEMBL)
TAS2R38 ProteinP59533 (Uniprot-TrEMBL)
TAS2R39 ProteinP59534 (Uniprot-TrEMBL)
TAS2R4 ProteinQ9NYW5 (Uniprot-TrEMBL)
TAS2R40 ProteinP59535 (Uniprot-TrEMBL)
TAS2R41 ProteinP59536 (Uniprot-TrEMBL)
TAS2R42 ProteinQ7RTR8 (Uniprot-TrEMBL)
TAS2R43 ProteinP59537 (Uniprot-TrEMBL)
TAS2R45 ProteinP59539 (Uniprot-TrEMBL)
TAS2R46 ProteinP59540 (Uniprot-TrEMBL)
TAS2R5 ProteinQ9NYW4 (Uniprot-TrEMBL)
TAS2R50 ProteinP59544 (Uniprot-TrEMBL)
TAS2R60 ProteinP59551 (Uniprot-TrEMBL)
TAS2R7 ProteinQ9NYW3 (Uniprot-TrEMBL)
TAS2R8 ProteinQ9NYW2 (Uniprot-TrEMBL)
TAS2R9 ProteinQ9NYW1 (Uniprot-TrEMBL)
Tatridin B MetaboliteCHEBI:73239 (ChEBI)
Thiamine MetaboliteCHEBI:26948 (ChEBI)
UDP-Glc MetaboliteCHEBI:18066 (ChEBI)
UTP MetaboliteCHEBI:15713 (ChEBI)
Visual phototransductionPathwayR-HSA-2187338 (Reactome) Visual phototransduction is the process by which photon absorption by visual pigment molecules in photoreceptor cells is converted to an electrical cellular response. The events in this process are photochemical, biochemical and electrophysiological and are highly conserved across many species. This process occurs in two types of photoreceptors in the retina, rods and cones. Each type consists of two parts, the outer segment which detects a photon signal and the inner segment which contains the necessary machinery for cell metabolism. Each type of cell functions differently. Rods are very light sensitive but their flash response is slow so they work best in twilight conditions but are not good at detecting objects moving quickly. Cones are less light-sensitive and have a fast flash response so they work best in daylight conditions and are better at detecting fast moving objects than rods.

The visual pigment consists of a chromophore (11-cis-retinal, 11cRAL, A1) covalently attached to a GPCR opsin family member. The linkage is via a Schiff base forming retinylidene protein. Upon photon absorption, 11cRAL isomerises to all-trans retinal (atRAL), changing the conformation of opsin to an activated form which can activate the regulatory G protein transducin (Gt). The alpha subunit of Gt activates phosphodiesterase which hydrolyses cGMP to 5'-GMP. As high level of cGMP keep cGMP-gated sodium channels open, the lowering of cGMP levels closes these channels which causes hyperpolarization of the cell and subsequently, closure of voltage-gated calcium channels. As calcium levels drop, the level of the neurotransmitter glutamate also drops causing depolarization of the cell. This effectively relays the light signal to postsynaptic neurons as electrical signal (Burns & Pugh 2010, Korenbrot 2012, Pugh & Lamb 1993).

11cRAL cannot be synthesised in vertebrates. Vitamin A from many dietary sources is the precursor for 11cRAL. It is taken from food in the form of esters such as retinyl acetate or palmitate or one of four caretenoids (alpha-carotene, beta-carotene, gamma-carotene and beta-cryptoxanthin). Retinoids are transported from the gut to be stored in liver, until required by target organs such as the eye (Harrison & Hussain 2001, Harrison 2005). In the eye, in the form 11cRAL, it is used in the retinoid (visual) cycle to initiate phototransduction and for visual pigment regeneration to ready the photoreceptor for the next phototransduction event (von Lintig 2012, Blomhoff & Blomhoff 2006, von Lintig et al. 2010, D'Ambrosio et al. 2011, Wang & Kefalov 2011, Kefalov 2012, Wolf 2004).
Yohimbine MetaboliteCHEBI:10093 (ChEBI)
cAMPMetaboliteCHEBI:17489 (ChEBI)
cis-isohumulone MetaboliteCHEBI:73236 (ChEBI)
p-Y416-SRC ProteinP12931 (Uniprot-TrEMBL)
p-Y416-SRCProteinP12931 (Uniprot-TrEMBL)

Annotated Interactions

View all...
SourceTargetTypeDatabase referenceComment
ADPArrowR-HSA-8964242 (Reactome)
ATPR-HSA-392129 (Reactome)
ATPR-HSA-8964242 (Reactome)
Adenylate cyclase (Mg2+ cofactor)R-HSA-392206 (Reactome)
G alpha (i):GTP:SRC-1ArrowR-HSA-8964311 (Reactome)
G alpha (i):GTP:SRC-1R-HSA-8964242 (Reactome)
G alpha (i):GTP:SRC-1mim-catalysisR-HSA-8964242 (Reactome)
G alpha

(s):GTP:Adenylate

cyclase
mim-catalysisR-HSA-392129 (Reactome)
G alpha (i): GTPArrowR-HSA-749454 (Reactome)
G alpha (i): GTPArrowR-HSA-8964329 (Reactome)
G alpha (i): GTPR-HSA-392206 (Reactome)
G alpha (i): GTPR-HSA-392212 (Reactome)
G alpha (i): GTPR-HSA-8964311 (Reactome)
G alpha (i): GTPR-HSA-8982019 (Reactome)
G alpha (i): GTPmim-catalysisR-HSA-392212 (Reactome)
G alpha (i):GDP:RGSArrowR-HSA-8982020 (Reactome)
G alpha (i):GDP:RGSR-HSA-8982012 (Reactome)
G alpha (i):GTP:RGSArrowR-HSA-8982019 (Reactome)
G alpha (i):GTP:RGSR-HSA-8982020 (Reactome)
G alpha (i):GTP:RGSmim-catalysisR-HSA-8982020 (Reactome)
G protein alpha (i):GTP:p-Y416-SRCArrowR-HSA-8964242 (Reactome)
G protein alpha (i):GTP:p-Y416-SRCR-HSA-8964329 (Reactome)
G-alpha(t)-GDP:G-beta-gammaR-HSA-8982637 (Reactome)
G-alpha(t)-GTPArrowR-HSA-8982640 (Reactome)
G-alpha(t):GDP:G-beta-gamma:OpsinsArrowR-HSA-8982637 (Reactome)
G-alpha(t):GDP:G-beta-gamma:OpsinsR-HSA-420883 (Reactome)
G-alpha(t):GTP:G-beta-gamma:OpsinsArrowR-HSA-420883 (Reactome)
G-alpha(t):GTP:G-beta-gamma:OpsinsR-HSA-8982640 (Reactome)
G-protein alpha (i):GDPArrowR-HSA-392212 (Reactome)
G-protein alpha (i):GDPArrowR-HSA-8982012 (Reactome)
G-protein alpha (i):GDPR-HSA-751001 (Reactome)
G-protein alpha

(i):GTP:Adenylate

cyclase
ArrowR-HSA-392206 (Reactome)
G-protein alpha

(z):GTP:Adenylate

cyclase
TBarR-HSA-392129 (Reactome)
G-protein beta-gamma complexArrowR-HSA-749454 (Reactome)
G-protein beta-gamma complexArrowR-HSA-8982640 (Reactome)
G-protein beta-gamma complexR-HSA-751001 (Reactome)
GDPArrowR-HSA-380073 (Reactome)
GDPArrowR-HSA-420883 (Reactome)
GPSM1, GPSM3,(GPSM2, PCP2)TBarR-HSA-380073 (Reactome)
GTPR-HSA-380073 (Reactome)
GTPR-HSA-420883 (Reactome)
Heterotrimeric

G-protein Gi

(inactive)
ArrowR-HSA-751001 (Reactome)
Heterotrimeric

G-protein Gi

(inactive)
R-HSA-749456 (Reactome)
Ligand:GPCR

complexes that activate Gi:Heterotrimeric G-protein Gi

(active)
ArrowR-HSA-380073 (Reactome)
Ligand:GPCR

complexes that activate Gi:Heterotrimeric G-protein Gi

(active)
R-HSA-749454 (Reactome)
Ligand:GPCR

complexes that activate Gi:Heterotrimeric G-protein Gi

(inactive)
ArrowR-HSA-749456 (Reactome)
Ligand:GPCR

complexes that activate Gi:Heterotrimeric G-protein Gi

(inactive)
R-HSA-380073 (Reactome)
Ligand:GPCR

complexes that activate Gi:Heterotrimeric G-protein Gi

(inactive)
mim-catalysisR-HSA-380073 (Reactome)
Ligand:GPCR

complexes that

activate Gi
ArrowR-HSA-749454 (Reactome)
Ligand:GPCR

complexes that

activate Gi
R-HSA-749456 (Reactome)
Opsins:photonArrowR-HSA-8982640 (Reactome)
Opsins:photonR-HSA-8982637 (Reactome)
Opsins:photonmim-catalysisR-HSA-420883 (Reactome)
Opsins:photonmim-catalysisR-HSA-8982637 (Reactome)
Opsins:photonmim-catalysisR-HSA-8982640 (Reactome)
PPiArrowR-HSA-392129 (Reactome)
PiArrowR-HSA-392212 (Reactome)
PiArrowR-HSA-8982020 (Reactome)
R-HSA-380073 (Reactome) The liganded receptor undergoes a conformational change, generating a signal that is propagated in a manner that is not completely understood to the the G-protein. This stimulates the exchange of GDP for GTP in the G-protein alpha subunit, activating the G-protein. This event is negatively regulated by some Activators of G protein signaling (AGS) proteins, a class of proteins identified in yeast functional screens for proteins able to activate G protein signaling in the absence of a G protein–coupled receptor (GPCR) (Cismowski et al. 1999, Takesono et al. 1999). AGS proteins contain G protein regulatory (GPR) motifs (also referred to as the GoLoco motif) that bind and stabilize the Galpha subunit in its GDP-bound conformation (Mochizuki et al. 1996, Peterson et al. 2000, Cao et al. 2004, Blumer & Lanier 2014). Some RGS proteins similarly bind to Galpha preventing the exchange of GDP for GTP (Soundararajan et al. 2008).
R-HSA-392129 (Reactome) The activation of adenylyl (adenylate) cyclase (AC) results in the production of adenosine-3',5'-monophosphate i.e. cyclic AMP. Humans have 9 genes encoding membrane-associated AC and one encoding a soluble AC. Two of the classes of heterotrimeric G-proteins are named according to their effect on AC; G(s) stimulates all membrane-bound ACs (the s in G(s) denotes AC stimulatory); the G(i) class inhibits some AC isoforms, particularly 5 and 6. Beta-gamma subunits of heterotrimeric G-proteins can also regulate AC. Ca2+/Calmodulin activates some AC isoforms (1, 8 and 3) but is inhibitory to others (5 and 6).
R-HSA-392206 (Reactome) G-proteins in the Gi class inhibit adenylate cyclase activity, decreasing the production of cAMP from ATP, which has many consequences but classically results in decreased activity of Protein Kinase A (PKA). cAMP also activates the cyclic nucleotide-gated ion channels, a process that is particularly important in olfactory cells.
R-HSA-392212 (Reactome) When a ligand activates a G protein-coupled receptor, it induces a conformational change in the receptor (a change in shape) that allows the receptor to function as a guanine nucleotide exchange factor (GEF), stimulating the exchange of GDP for GTP on the G alpha subunit. In the traditional view of heterotrimeric protein activation, this exchange triggers the dissociation of the now active G alpha subunit from the beta:gamma dimer, initiating downstream signalling events. The G alpha subunit has intrinsic GTPase activity and will eventually hydrolyze the attached GTP to GDP, allowing reassociation with G beta:gamma. Additional GTPase-activating proteins (GAPs) stimulate the GTPase activity of G alpha, leading to more rapid termination of the transduced signal. In some cases the downstream effector may have GAP activity, helping to deactivate the pathway. This is the case for phospholipase C beta, which possesses GAP activity within its C-terminal region (Kleuss et al. 1994).
R-HSA-420883 (Reactome) Transducin (Gt) is a heterotrimeric G protein encoded by GNAT genes and is naturally expressed in vertebrate retina rods and cones. There are two types, alpha-1 chain (expressed in rods by GNAT1) (Lerea CL et al, 1989) and alpha-2 chain (expressed in cones by GNAT2) (Morris TA and Fong SL, 1993). Stimulated opsins can act as GEFs for G (t) alpha subunits by replacing GDP with GTP. Consequently, the G (t) alpha subunit is activated and results in the "vertebrate phototransduction cascade" (Chen CK, 2005). Cyclic GMP Phosphodiesterase is activated which lowers cGMP levels (an intracellular second messenger molecule). Lower cGMP levels can then lead to the closure of cGMP-regulated Na+ and Ca2+ ion channels and a hyperpolarized membrane potential.

R-HSA-749454 (Reactome) The classical view of G-protein signalling is that the G-protein alpha subunit dissociates from the beta:gamma dimer. Activated G alpha (i) and the beta:gamma dimer then participate in separate signaling cascades. Although G protein dissociation has been contested (e.g. Bassi et al. 1996), recent in vivo experiments have demonstrated that dissociation does occur, though possibly not to completion (Lambert 2008).
R-HSA-749456 (Reactome) Many unrelated GPCRs couple with the Gi G-protein subtype. The G-alpha (i) subunit inhibits the production of cAMP from ATP. In turn, this results in decreased activity of cAMP-dependent protein kinase. There are 8 types of G-alpha (i) known to date:G(i)1, G(i)2, G(i)3, G(i)o, G(i)z, G(i)gust (gustducin) and two G(i)t (retinal transducin) (Downes GB and Gautam N, 1999). Once GDP is exchanged for GTP on the alpha subunit, it dissociates from the G-beta-gamma subunit.
R-HSA-751001 (Reactome) The classical model of G-protein signaling suggests that the G-protein dissociates upon GPCR activation. The active G alpha (i) subunit then participates in signaling, until its intrinsic GTPase activity degrades the bound GTP to GDP. The inactive G alpha (i):GDP complex has much higher affinity for the G beta:gamma complex and consequently reassociates.
R-HSA-8964242 (Reactome) G-Protein Coupled Receptors sense extracellular signals and activate different Guanine nucleotide binding proteins. Upon activation, the alpha subunit of the G protein (GNAI) can directly bind to SRC. In the presence of active GNAI, SRC can autophosphorylate the 416-tyrosine residue, which leads to the subsequent activation of SRC. Physiologically, the SRC family have implications in cell growth and cancer.
R-HSA-8964311 (Reactome) G-Protein Coupled Receptors (GPCR) sense extracellular signals and activate different Guanine nucleotide binding proteins. Upon activation, the Guanine nucleotide-binding protein G(i) subunit alpha (GNAI) can bind directly to proto-oncogene tyrosine-protein kinase Src (SRC) in vitro and in vivo. This binding results in autophosphorylation of SRC and subsequently its activation. Physiologically, the SRC family have implications in cell growth and cancer.
R-HSA-8964329 (Reactome) G-Protein Coupled Receptors sense extracellular signals and activate different Guanine nucleotide binding proteins. Upon activation, the Guanine nucleotide-binding protein G(i) subunit alpha (GNAI) can directly bind to proto-oncogene tyrosine-protein kinase Src (SRC). When bound to active GNAI, SRC can autophosphorylate the 416-tyrosine residue. Upon autophosphorylation, SRC dissociates from GNAI and is subsequently activated. GNAI increases SRC enzymatic activity by decreasing Km and not affecting Vm. Physiologically, the SRC family have implications in cell growth and cancer.
R-HSA-8982012 (Reactome) G Protein Coupled Receptors (GPCR) sense extracellular signals and activate different Guanine nucleotide binding proteins (G proteins). Upon activation, GPCRs can replace the GDP with GTP in the alpha subunit of G proteins. GTP binding modifies the conformation of G alpha proteins and activates them. The Regulator of G protein Signalling (RGS) are GTPase Accelerating Proteins (GAPs) that can directly inhibit the G alpha subunit activity. There are at least 25 different types of RGS proteins known. Several of these RGS proteins (1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21) can bind and stabilize the transition state of Guanine nucleotide binding protein G(i) subunit alpha (GNAI). Subsequently, RGS proteins in the complex facilitate the hydrolyses of GNAI:GTP to GNAI:GDP. Following this, the complex dissociates releasing inactive GNAI (Neubig & Siderovski 2002, Kach et al. 2012).
R-HSA-8982019 (Reactome) G Protein Coupled Receptors (GPCR) sense extracellular signals and activate different Guanine nucleotide binding proteins (G proteins). Upon activation, GPCRs can replace the GDP with GTP in the alpha subunit of G proteins. GTP binding modifies the conformation of G alpha proteins and activates them. The Regulator of G protein Signalling (RGS) proteins are GTPase Accelerating Proteins (GAPs) that can inhibit the G alpha subunit activity via their GAP activity. There are at least 25 different types of RGS proteins known. Several of these RGS proteins (1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21) can bind and stabilize the transition state for GTP hydrolysis of Guanine nucleotide binding protein G(i) subunit alpha (GNAI). Subsequently, this leads to GTP hydrolysis and inactivation of GNAI and terminating downstream signalling (Neubig & Siderovski DP 2002, Kach et al. 2012). The primary function of GNAI is the inhibition of adenylate cyclase.
R-HSA-8982020 (Reactome) G Protein Coupled Receptors (GPCR) sense extracellular signals and activate different Guanine nucleotide binding proteins (G proteins). Upon activation, GPCRs can replace the GDP with GTP in the alpha subunit of G proteins. GTP binding modifies the conformation of G alpha proteins and activates them. The Regulator of G protein Signalling (RGS) are GTPase Accelerating Proteins (GAPs) that can directly inhibit the G alpha subunit activity. There are at least 25 different types of RGS proteins known. Several of these RGS proteins (1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21) can bind and stabilize the transition state of Guanine nucleotide binding protein G(i) subunit alpha (GNAI). Following this, the RGS domain of the proteins exert GAP activity on GNAI and allosterically modulate residues within G-alpha subunit to accelerate the intrinsic GTPase activity that hydrolyses GTP to GDP. This inactivates GNAI and terminates downstream signalling (Neubig & Siderovski 2002, Kach et al. 2012).
R-HSA-8982637 (Reactome) Transducin (Gt) is a heterotrimeric G protein encoded by GNAT genes and is naturally expressed in vertebrate retina rods and cones. There are two types, alpha-1 chain (expressed in rods by GNAT1) (Lerea CL et al, 1989) and alpha-2 chain (expressed in cones by GNAT2) (Morris TA and Fong SL, 1993). Photon activated-opsins can bind to G(t) alpha subunits and stimulate them. Activation of the G(t) alpha subunit results in the "vertebrate phototransduction cascade" (Chen CK, 2005). Cyclic GMP Phosphodiesterase is activated which lowers cGMP levels (an intracellular second messenger molecule). Lower cGMP levels can then lead to the closure of cGMP-regulated Na+ and Ca2+ ion channels and a hyperpolarized membrane potential.

R-HSA-8982640 (Reactome) Transducin (Gt) is a heterotrimeric G protein encoded by GNAT genes and is naturally expressed in vertebrate retina rods and cones. There are two types, alpha-1 chain (expressed in rods by GNAT1) (Lerea CL et al, 1989) and alpha-2 chain (expressed in cones by GNAT2) (Morris TA and Fong SL, 1993). Stimulated opsins can bind to and act as GEFs for G (t) alpha subunits thereby replacing the GDP with GTP. Subsequently, activated G (t) alpha proteins dissociate from the complex. Activation of the G (t) alpha subunit results in the "vertebrate phototransduction cascade" (Chen CK, 2005). Cyclic GMP Phosphodiesterase is activated which lowers cGMP levels (an intracellular second messenger molecule). Lower cGMP levels can then lead to the closure of cGMP-regulated Na+ and Ca2+ ion channels and a hyperpolarized membrane potential.

RGS proteins active for G alpha (i)ArrowR-HSA-392212 (Reactome)
RGS1,3,4,5,6,7,8,9,10,11,12,13,14,16,17,18,19,20,21ArrowR-HSA-8982012 (Reactome)
RGS1,3,4,5,6,7,8,9,10,11,12,13,14,16,17,18,19,20,21R-HSA-8982019 (Reactome)
SRCR-HSA-8964311 (Reactome)
TBarR-HSA-392129 (Reactome)
cAMPArrowR-HSA-392129 (Reactome)
p-Y416-SRCArrowR-HSA-8964329 (Reactome)
Personal tools