WikiPathways:NewPathwayReleases
From WikiPathways
Each month there are new pathways reviewed and approved for the official release of WikiPathways. See the Download Page to access the full collection.
Contents |
October 2022
|
Image does not exist Chronic hyperglycemia impairment of neuron function (Homo sapiens) |
Image does not exist Serotonin reuptake inhibitor response (Daphnia magna) |
Image does not exist Endothelial cell senescence (Homo sapiens) |
Image does not exist Ether lipid biosynthesis (Homo sapiens) |
|
Image does not exist Frustrated phagocytosis leading to malignant pleural mesothelioma (Homo sapiens) |
Image does not exist Immune infiltration in pancreatic cancer (Homo sapiens) |
September 2022
|
Image does not exist Triacylglyceride synthesis (Gallus gallus) |
August 2022
|
Image does not exist Hippocampal synaptogenesis and neurogenesis (Homo sapiens) |
Image does not exist Arsenic metabolism and reactive oxygen species generation (Homo sapiens) |
Image does not exist Bardet-Biedl syndrome (Homo sapiens) |
Image does not exist Estradiol regulation in Porto-Sinusoidal Vascular Disease (Homo sapiens) |
|
Image does not exist Cholestasis (Homo sapiens) |
Image does not exist Neurogenesis regulation in the olfactory epithelium (Homo sapiens) |
Image does not exist Genetic causes of PSVD/INCPH (Homo sapiens) |
Image does not exist Bacterial ceramide synthesis (Caulobacter vibrioides) |
|
Image does not exist LDL- influence on CD14 and TLR4 (Homo sapiens) |
Image does not exist Effect of intestinal microbiome on anticoagulant response of Vitamin K antagonists (Homo sapiens) |
Image does not exist Farnesyl to CoQ10 metabolism (Homo sapiens) |
July 2022
|
Image does not exist Lac-Phe pathway (Homo sapiens) |
Image does not exist Lac-Phe pathway (Mus musculus) |
Image does not exist Mitochondrial beta oxidation (Homo sapiens) |
June 2022
|
Image does not exist 2q11.2 copy number variation syndrome (Homo sapiens) |
May 2022
|
Image does not exist Leucine, isoleucine and valine metabolism (Homo sapiens) |
Image does not exist Metabolic reprogramming in pancreatic cancer (Homo sapiens) |
Image does not exist 2q13 copy number variation syndrome (Homo sapiens) |
Image does not exist 2q21.1 copy number variation syndrome (Homo sapiens) |
|
Image does not exist 2q37 copy number variation syndrome (Homo sapiens) |
April 2022
|
Image does not exist Docosahexaenoic acid (DHA) oxylipin metabolism (Homo sapiens) |
Image does not exist Metabolic pathway leukotriene (Homo sapiens) |
Image does not exist DYRK1A (Homo sapiens) |
Image does not exist Roles of ceramides in the development of insulin resistance (Homo sapiens) |
|
Image does not exist Pro-survival signaling of neuroprotectin D1 (Homo sapiens) |
Image does not exist Activation of Vitamin K-dependent proteins (Homo sapiens) |
Image does not exist Retinol Metabolism (Homo sapiens) |
Image does not exist Creatine Pathway (Homo sapiens) |
|
Image does not exist ResolvinE1 and ResolvinD1 signaling pathways promoting inflammation resolution (Homo sapiens) |
Image does not exist Modulation of the PI3K-Akt-mTOR signaling by bioactive sphingolipids (Homo sapiens) |
Image does not exist Cholesterol synthesis disorders (Homo sapiens) |
Image does not exist Synthesis of ceramides and 1-deoxyceramides (Homo sapiens) |
|
Image does not exist N-Glycan biosynthesis (Sheep) (Ovis aries) |
Image does not exist PtdIns(4,5)P2 in cytokinesis pathway (Homo sapiens) |
Image does not exist Dravet syndrome (Homo sapiens) |
Image does not exist Phospholipid biosynthesis (Saccharomyces cerevisiae) |
|
Image does not exist Alstrom syndrome (Homo sapiens) |
Image does not exist Clocked controlled autophagy in bone metabolism (Homo sapiens) |
Image does not exist Glucose metabolism in triple-negative breast cancer cells (Homo sapiens) |
Image does not exist Amino acid metabolism in triple-negative breast cancer cells (Homo sapiens) |
|
Image does not exist Extrafollicular B cell activation by SARS-CoV-2 (Homo sapiens) |
March 2022
|
Image does not exist Th17 cell differentiation pathway (Homo sapiens) |
Image does not exist ALA oxylipin metabolism (Homo sapiens) |
Image does not exist Linoleic acid oxylipin metabolism (Homo sapiens) |
Image does not exist GDNF signaling (Homo sapiens) |
|
Image does not exist Lipid metabolism in senescent cells (Homo sapiens) |
Image does not exist Glyoxylate metabolism (Homo sapiens) |
Image does not exist Hemesynthesis defects and porphyrias (Homo sapiens) |
Image does not exist Disorders of galactose metabolism (Homo sapiens) |
|
Image does not exist Ulcerative colitis signaling (Homo sapiens) |
Image does not exist Disorders in ketone body synthesis (Homo sapiens) |
Image does not exist Disorders of bile acid synthesis and biliary transport (Homo sapiens) |
Image does not exist Disorders of fructose metabolism (Homo sapiens) |
|
Image does not exist Biosynthesis and turnover of 1-deoxy-sphingoid bases (Homo sapiens) |
Image does not exist SARS-CoV-2 Mediated Endothelial Dysfunction: The Potential Role of Chronic Oxidative Stress in the mitochondria (Homo sapiens) |
Image does not exist mRNA vaccine activation of Dendritic cell and induction of IFN-1 (Homo sapiens) |
Image does not exist Copper metabolism (Homo sapiens) |
|
Image does not exist Disorders in Ketolysis (Homo sapiens) |
Image does not exist Inflammatory bowel disease signaling (Homo sapiens) |
January 2022
|
Image does not exist Serotonin HTR1 group and FOS pathway (Homo sapiens) |
Image does not exist BDNF pathway (Mus musculus) |
Image does not exist Quercetin and Nf-kB / AP-1 induced apoptosis (Homo sapiens) |
Image does not exist mRNA, protein, and metabolite inducation pathway by cyclosporin A (Homo sapiens) |
|
Image does not exist Flavan-3-ol metabolic pathway (Homo sapiens) |
Image does not exist miRNA degrading enzymes (Homo sapiens) |
Image does not exist Measles virus infection (Homo sapiens) |
Image does not exist Non-classical role of vitamin D (Homo sapiens) |
|
Image does not exist SARS-CoV-2 replication organelle formation (Homo sapiens) |
December 2021
|
Image does not exist GPR143 in melanocytes and retinal pigment epithelium cells (Homo sapiens) |
Image does not exist Pentose phosphate pathway in senescent cells (Homo sapiens) |
Image does not exist Salmonella virulence regulatory network (Escherichia coli) |
Image does not exist NRP1-triggered signaling pathways in pancreatic cancer (Homo sapiens) |
September 2021
|
Image does not exist Vasopressin-regulated water reabsorption (Homo sapiens) |
August 2021
|
Image does not exist Angiotensin II receptor type 1 pathway (Homo sapiens) |
Image does not exist Burn wound healing (Homo sapiens) |
Image does not exist Burn Wound Healing (Mus musculus) |
Image does not exist Malignant pleural mesothelioma (Homo sapiens) |
|
Image does not exist Burn wound healing (Rattus norvegicus) |
Image does not exist Kinin-Kallikrein pathway (Homo sapiens) |
Image does not exist Network map of SARS-CoV-2 signaling pathway (Homo sapiens) |
Image does not exist SMC1/SMC3 role in DNA damage - Cornelia de Lange Syndrome (Homo sapiens) |
|
Image does not exist Prostaglandin signaling (Homo sapiens) |
Image does not exist Orexin receptor pathway (Homo sapiens) |
Image does not exist Overview of proinflammatory and profibrotic mediators (Homo sapiens) |
Image does not exist CCL18 signaling pathway (Homo sapiens) |
|
Image does not exist Nucleotide excision repair in xeroderma pigmentosum (Homo sapiens) |
Image does not exist Cohesin complex - Cornelia de Lange syndrome (Homo sapiens) |
Image does not exist NIPBL role in DNA damage - Cornelia de Lange syndrome (Homo sapiens) |
Image does not exist Sphingolipid metabolism in senescence (Homo sapiens) |
|
Image does not exist Prostaglandin and leukotriene metabolism in senescence (Homo sapiens) |
Image does not exist Fibrin complement receptor 3 signaling pathway (Mus musculus) |
July 2021
|
Image does not exist Hypoxia-dependent self-renewal of myoblasts (Mus musculus) |
Image does not exist Hypoxia-dependent proliferation of myoblasts (Mus musculus) |
Image does not exist Hypoxia-dependent differentiation of myoblasts (Mus musculus) |
Image does not exist Inclusion body myositis (Homo sapiens) |
|
Image does not exist Familial hyperlipidemia type 1 (Homo sapiens) |
Image does not exist Familial hyperlipidemia type 2 (Homo sapiens) |
Image does not exist Familial hyperlipidemia type 3 (Homo sapiens) |
Image does not exist Familial hyperlipidemia type 4 (Homo sapiens) |
|
Image does not exist T-cell activation SARS-CoV-2 (Homo sapiens) |
Image does not exist Congenital generalized lipodystrophy (CGL) (Homo sapiens) |
Image does not exist Familial partial lipodystrophy (FPLD) (Homo sapiens) |
Image does not exist Progeria-associated lipodystrophy (Homo sapiens) |
|
Image does not exist Familial hyperlipidemia type 5 (Homo sapiens) |
Image does not exist Acquired partial lipodystrophy / Barraquer-Simons syndrome (Homo sapiens) |
Image does not exist Antiviral and anti-inflammatory effects of Nrf2 on SARS-CoV-2 pathway (Homo sapiens) |
Image does not exist Alzheimer's disease (Homo sapiens) |
|
Image does not exist SARS-CoV-2 B.1.1.7 variant antagonises innate immune activation (Homo sapiens) |
Image does not exist Meta pathway lipodystrophy, dyslipidemia and hyperlipidemia (Homo sapiens) |
Image does not exist Interactions of natural killer cells in pancreatic cancer (Homo sapiens) |
June 2021
|
Image does not exist Genes associated with the development of rheumatoid arthritis (Homo sapiens) |
Image does not exist Neuroinflammation and glutamatergic signaling (Homo sapiens) |
Image does not exist Complement system in neuronal development and plasticity (Homo sapiens) |
Image does not exist Fatty acid biosynthesis (Caenorhabditis elegans) |
|
Image does not exist Hepatocyte growth factor receptor signaling (Gallus gallus) |
Image does not exist Hepatocyte growth factor receptor signaling (Pan troglodytes) |
Image does not exist Hepatocyte growth factor receptor signaling (Canis familiaris) |
Image does not exist S1P receptor signal transduction (Canis familiaris) |
May 2021
|
Image does not exist Serine Metabolism (Homo sapiens) |
Image does not exist Peptidoglycan cytoplasmic synthesis and recycling pathways (Escherichia coli) |
Image does not exist FOXA2 pathway (Homo sapiens) |
Image does not exist Modulators of TCR signaling and T cell activation (Homo sapiens) |
|
Image does not exist Kallmann's Syndrome (Homo sapiens) |
Image does not exist Fatty acid transporters (Homo sapiens) |
April 2021
|
Image does not exist FOXP3 in COVID-19 (Homo sapiens) |
Image does not exist SARS-CoV-2 altering angiogenesis via NRP1 (Homo sapiens) |
Image does not exist Soluble ACE2-mediated cell entry of SARS-CoV-2 (Homo sapiens) |
March 2021
|
Image does not exist Hair Follicle Development: Organogenesis - Part 2 of 3 (Homo sapiens) |
Image does not exist Liver steatosis AOP (Homo sapiens) |
Image does not exist nsp1 from SARS-CoV-2 inhibits translation initiation in the host cell (Homo sapiens) |
Image does not exist Kynurenine Pathway and links to Cellular Senescence (Homo sapiens) |
|
Image does not exist NAD Metabolism in Oncogene-Induced Senescence and Mitochondrial Dysfunction-Associated Senescence (Homo sapiens) |
Image does not exist Nephrogenesis (Homo sapiens) |
Image does not exist Development of ureteric collection system (Homo sapiens) |
Image does not exist 7-oxo-C and 7beta-HC pathways (Homo sapiens) |
February 2021
|
Image does not exist Airway smooth muscle cell contraction (Homo sapiens) |
Image does not exist SARS-CoV-2 mitochondrial interactions (Homo sapiens) |
Image does not exist SARS-CoV-2 Innate Immunity Evasion and Cell-specific immune response (Homo sapiens) |
Image does not exist Glycolysis in senescence (Homo sapiens) |
|
Image does not exist TCA cycle in senescence (Homo sapiens) |
January 2021
|
Image does not exist Mitochondrial fatty acid synthesis pathway (Homo sapiens) |
Image does not exist Ethylmalonic Encephalopathy (Homo sapiens) |
Image does not exist Biotin Metabolism (including IEMs) (Homo sapiens) |
Image does not exist Riboflavin and CoQ disorders (Homo sapiens) |

